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Problem Total causal effects are often not identifiable from observational data.
Idea Use observational data and bg knowledge to identify more total causal effects.
Results On graphs obtained from observational data and background knowledge:
1. Adjustment criterion for estimating total causal effects.
2. Modified frameworks for estimating sets of possible total causal effects.
3. Implemented and modified algorithms in R package pcalg [5].
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Sources of background knowledge:

•Applications - Expert knowledge, previous studies etc. [6, 8]
•Using a mix of observational and interventional data [3, 9]
•Model restrictions [4, 2, 1]

Adding background knowledge
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Adjustment set
•A probability density f is compatible with the causal DAG D if:
f (v) =

∏p
j=1 f (xj|pa(xj,D)) and f (v|do(x)) =

∏
Xj∈V\X f (xj|pa(xj,D)).

• S is an adjustment set relative to (X,Y) in causal D if for any f compatible with D:
f (y|do(x)) =

{
f (y|x) if S = ∅,∫
S f (y|x, s)f (s)ds = ES{f (y|x, s)} otherwise.

Result 1: Adjustment criterion

Theorem [7] S is an adjustment set relative to (X,Y) and G iff
(Amenability)G is b-amenable relative to (X,Y).
(Forbidden set)S does not contain nodes in b-Forbidden(X,Y,G).
(Blocking)S blocks all proper b-non-causal definite status
paths from X to Y in G.

In a linear setting the total causal effect of X on Y is the
linear regression coefficient of X in the regression Y ∼ X + S.

Example

# of
meetings
per month

Field of
research

Conference
attendance

Experience of
supervisor

Other PhD
Students

# of
published
papers # of

meetings
per month

Field of
research

Conference
attendance

Experience of
supervisor

Other PhD
Students

# of
published
papers

•X = # of meetings per month, Y = # of published papers.
b-Forbidden(X, Y,G) = {# of published papers}.
Adjustment sets: {Experience of supervisor, Field of research}...
•X = Experience of supervisor, Y = # of published papers.

b-Forbidden(X, Y,G) = {# of meetings per month, # of published papers}.
Adjustment sets: {Field of research}, {Field of research, Other PhD students}...

Does an adjustment set always exist?
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20 000 DAGs:
p ∈ {20, 30, . . . , 100},
E[N ] ∈ {3, 4, . . . , 10}.

X - randomly chosen,
Y - connected to X
and Y 6→ X.

Result 2: IDA and joint-IDA framework

Idea: Use parent sets of X to estimate all possible total causal effects of X on Y.
Goal: Find all sets of parents of X in G in an efficient way.

For each set of possible parents S of X in graph G:

IDA w/o background knowledge:

For each S ∈ S, orient S → X in G. Check for new v-structures.

IDA w background knowledge:

For each S ∈ S, if possible, orient S → X and complete Meek (1995) rules,
otherwise next set. For each X − S̄ in G such that S̄ /∈ S, if possible, orient X → S̄
and complete Meek (1995) rules, otherwise next set.

Runtime: Median Mean Max

IDA without bg 0.003 0.003 0.009

IDA with bg 0.003 0.016 4.881

Identifiability gain with bg knowledge

4315 out of 20 000
sampled DAGs:
p ∈ {20, 30, . . . , 100},
E[N ] ∈ {3, 4, . . . , 10},
n = 200.

X - randomly chosen,
Y - connected to X
and Y 6→ X.
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