Interpreting and using CPDAGs with background knowledge

Problem Total causal effects are often not identifiable from observational data.

Idea Use observational data and bg knowledge to identify more total causal effects.

Results On graphs obtained from observational data and background knowledge: 1. Adjustment criterion for estimating total causal effects.

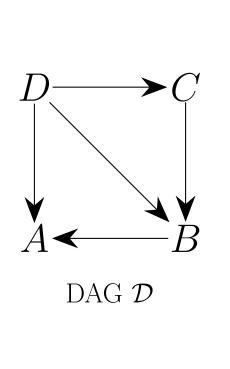
- 2. Modified frameworks for estimating sets of possible total causal effects.
- 3. Implemented and modified algorithms in R package pcalg [5].

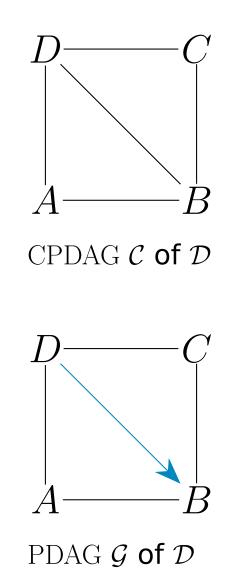
Framework Graphically find Observational adjustment set S data no hiddens, 2 no cycles Causal graph: Learn the causal structure DAG, with background There is no maximal PDAG, knowledge adjustment set ${f S}$ CPDAG Background knowledge

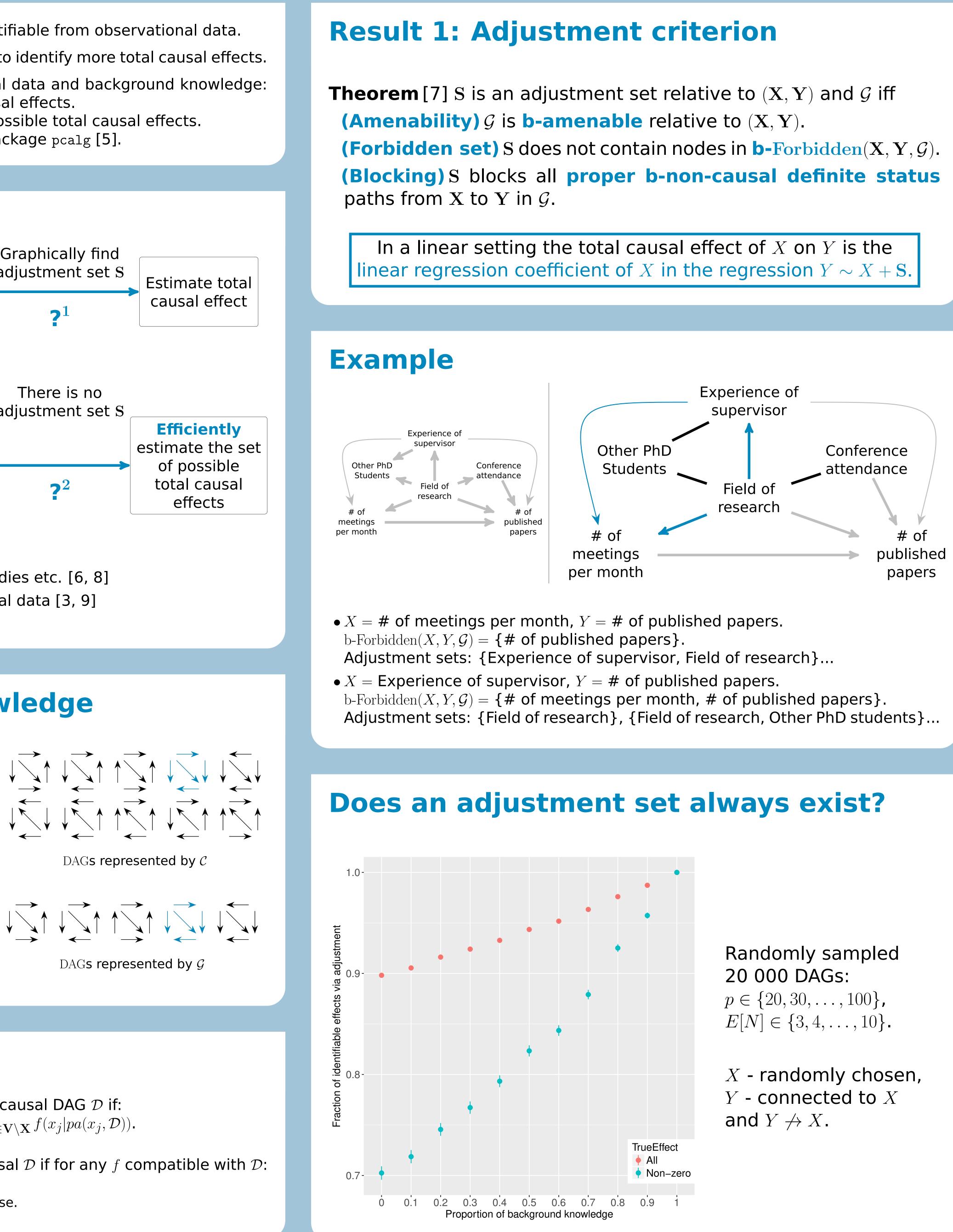
Sources of background knowledge:

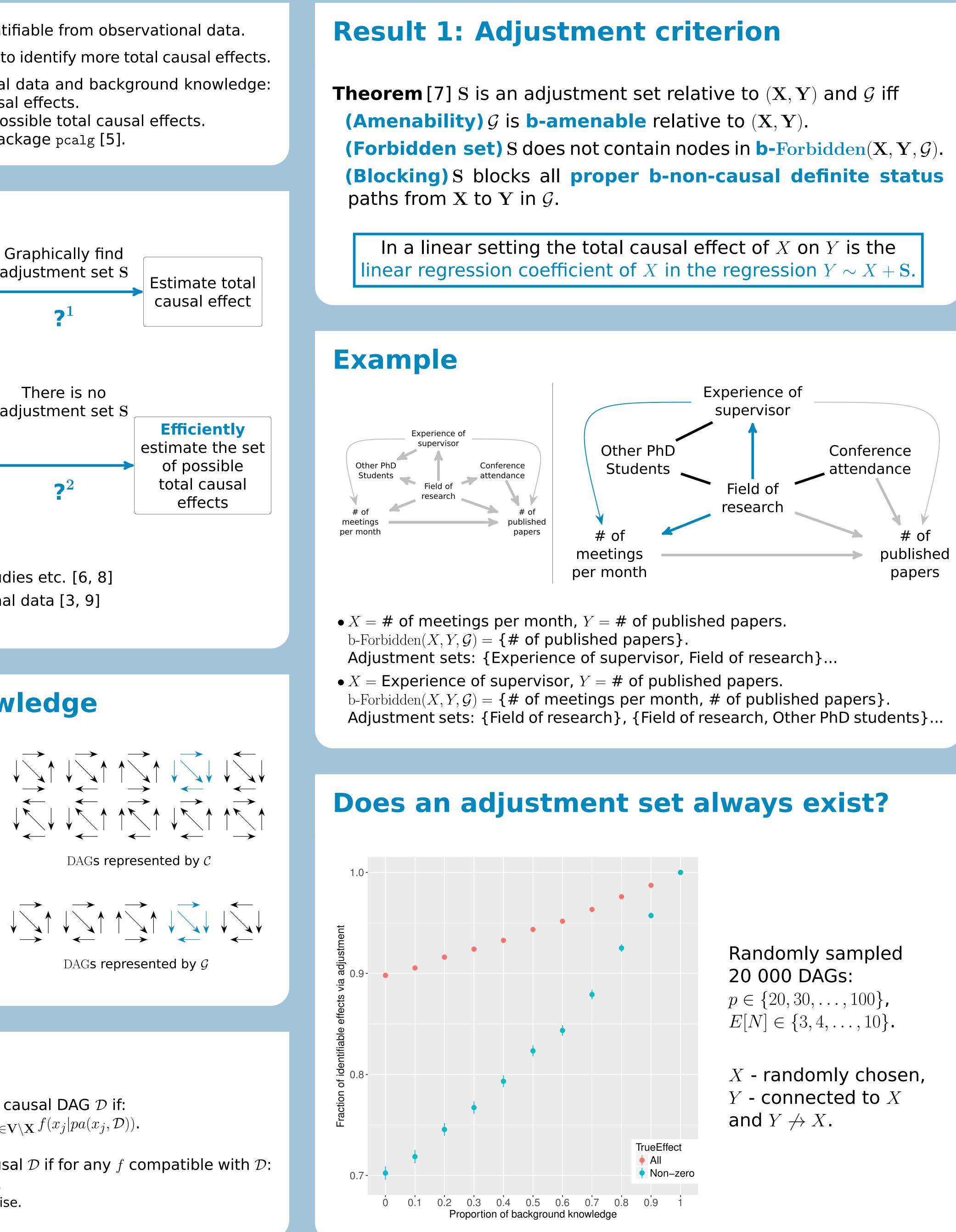
- Applications Expert knowledge, previous studies etc. [6, 8]
- Using a mix of observational and interventional data [3, 9]
- Model restrictions [4, 2, 1]

Adding background knowledge









Adjustment set

- A probability density f is compatible with the causal DAG \mathcal{D} if: $f(\mathbf{v}) = \prod_{j=1}^{p} f(x_j | pa(x_j, \mathcal{D}))$ and $f(\mathbf{v} | do(\mathbf{x})) = \prod_{X_j \in \mathbf{V} \setminus \mathbf{X}} f(x_j | pa(x_j, \mathcal{D}))$.
- S is an adjustment set relative to (X, Y) in causal \mathcal{D} if for any f compatible with \mathcal{D} : $f(\mathbf{y}|do(\mathbf{x})) = \begin{cases} f(\mathbf{y}|\mathbf{x}) \\ \ddots \end{cases}$ $\text{ if } \mathbf{S} = \emptyset, \\$ $\int_{\mathbf{S}} f(\mathbf{y}|\mathbf{x}, \mathbf{s}) f(\mathbf{s}) d\mathbf{s} = E_{\mathbf{S}} \{ f(\mathbf{y}|\mathbf{x}, \mathbf{s}) \} \text{ otherwise.}$

Emilija Perković, Markus Kalisch, and Marloes H. Maathuis

Seminar for Statistics, ETH Zurich

Result 2: IDA and joint-IDA framework

Idea: Use parent sets of X to estimate all possible total causal effects of X on Y. **Goal**: Find all sets of parents of X in \mathcal{G} in an efficient way.

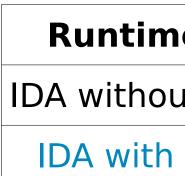
For each set of possible parents S of X in graph \mathcal{G} :

IDA w/o background knowledge:

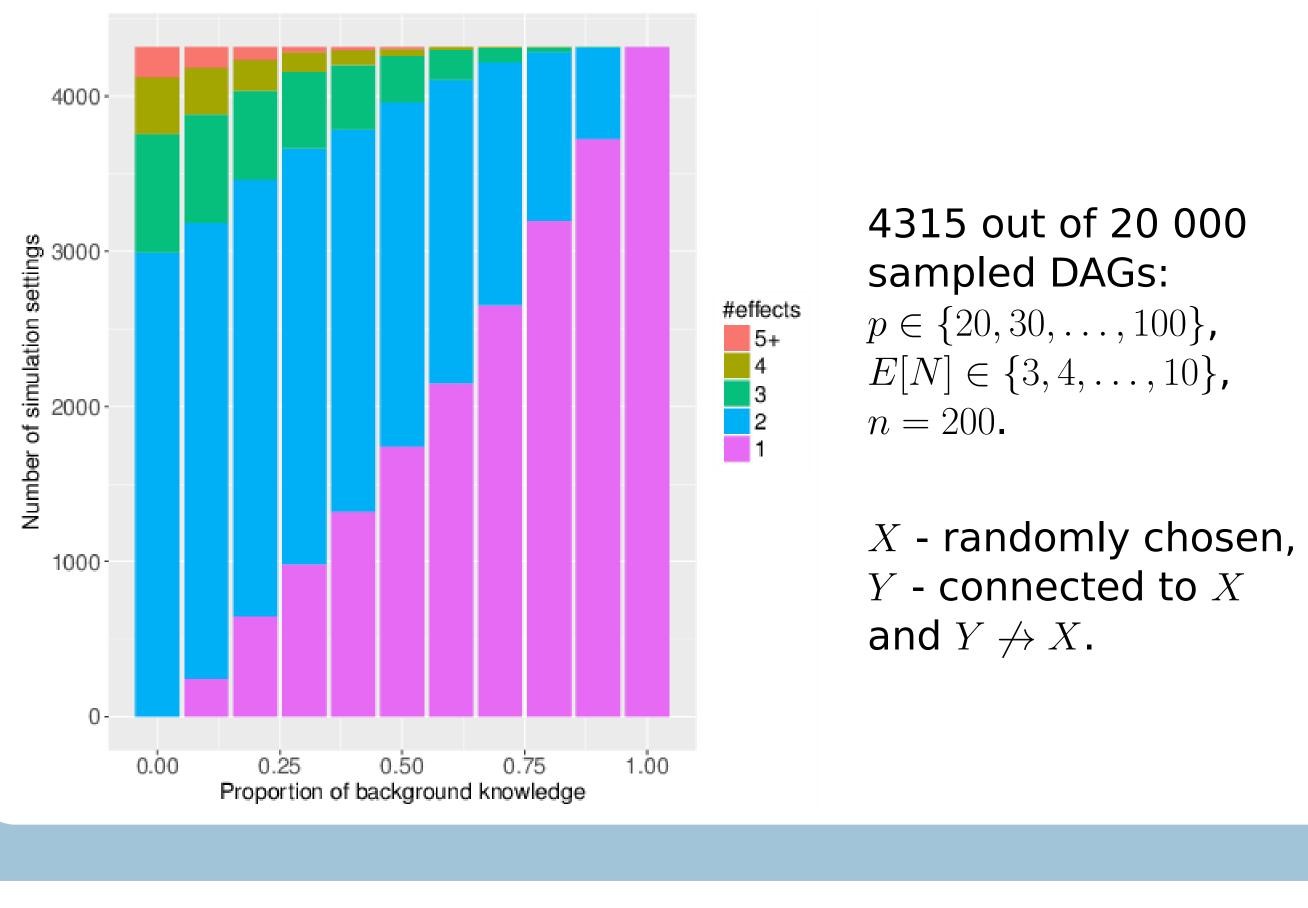
For each $S \in \mathbf{S}$, orient $S \to X$ in \mathcal{G} . Check for new v-structures.

IDA w background knowledge:

For each $S \in S$, if possible, orient $S \to X$ and complete Meek (1995) rules, otherwise next set. For each $X - \overline{S}$ in \mathcal{G} such that $\overline{S} \notin \mathbf{S}$, if possible, orient $X \to \overline{S}$ and complete Meek (1995) rules, otherwise next set.



Identifiability gain with bg knowledge



References

[1] M. Eigenmann, P. Nandy, and M. H. Maathuis. Structure learning of linear Gaussian structural equation models with weak edges. In Proceedings of UAI, 2017 [2] J. Ernest, D. Rothenhäusler, and P. Bühlmann. Causal inference in partially linear structural equation models: identifiability and estimation. arXiv:1607.05980, 2016. [3] A. Hauser and P. Bühlmann. Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs. J. Mach. Learn. Res., 2012. [4] P. O. Hoyer, A. Hyvarinen, R. Scheines, P. L. Spirtes, J. Ramsey, G. Lacerda, and S. Shimizu. Causal discovery of linear acyclic models with arbitrary distributions. In *Proceedings of UAI*, 2008. [5] M. Kalisch, M. Mächler, D. Colombo, M. H. Maathuis, and P. Bühlmann. Causal inference using graphical models with the R package pcalg. *J. Stat. Softw.*, 2012.

[6] C. Meek. Causal inference and causal explanation with background knowledge. In *Proceedings of UAI 1995*, pages 403–410, 1995.

[7] E. Perković, M. Kalisch, and M. H. Maathuis. Interpreting and using CPDAGs with background knowledge. In Proceedings of UAI, 2017. [8] R. Scheines, P. Spirtes, C. Glymour, C. Meek, and T. Richardson. The TETRAD project: constraint based aids to causal model specification.

Multivar. Behav. Res., 1998.

[9] Y. Wang, L. Solus, K. D. Yang, and C. Uhler. Permutation-based causal inference algorithms with interventions. arXiv:1705.10220, 2017.

ETHzürich

e:	Median	Mean	Max
ıt bg	0.003	0.003	0.009
bg	0.003	0.016	4.881