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Goal

• Estimate the total causal effect of X on Y

- the average change in Y due to do(x) -
from observational data.

• do(x): an intervention that sets variables X to x.

Observational data Randomized
control studies

Emilija Perković, ETH Zurich Characterizing and constructing adjustment sets 4 / 23



Goal

• Estimate the total causal effect of X on Y
- the average change in Y due to do(x) -

from observational data.

• do(x): an intervention that sets variables X to x.

Observational data Randomized
control studies

Emilija Perković, ETH Zurich Characterizing and constructing adjustment sets 4 / 23



Goal

• Estimate the total causal effect of X on Y
- the average change in Y due to do(x) -
from observational data.

• do(x): an intervention that sets variables X to x.

Observational data Randomized
control studies

Emilija Perković, ETH Zurich Characterizing and constructing adjustment sets 4 / 23



Framework

Observational
data

Causal
graph

Learn the
causal structure

Estimate total
causal effect

?

Emilija Perković, ETH Zurich Characterizing and constructing adjustment sets 5 / 23



Framework

Observational
data:

no cycles,
no selection bias,
latent confounders.

Causal
graph:

DAG,
CPDAG,
MAG,
PAG.

Learn the
causal structure:

PC, GES, ARGES,
FCI, RFCI,FCI+,...

Estimate total
causal effect:

use Y ∼ X + S,
or adjustment

formula.

Graphically find
adjustment set S.

• PC (Spirtes et al, 1993), GES (Chickering, 2002), ARGES (Nandy
et al, 2016).

• FCI (Spirtes et al 1993, Zhang 2008), RFCI (Colombo et al,
2012), FCI+ (Claassen et al, 2013).
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Framework

Observational
data:

no cycles,
no selection bias,
latent confounders.

Causal
graph:

DAG,
CPDAG,
MAG,
PAG.

Learn the
causal structure:

PC, GES, ARGES,
FCI, RFCI,FCI+,...

Estimate total
causal effect:

use Y ∼ X + S,
or adjustment

formula.

Graphically find
adjustment set S.

• Causal effects are often estimated by adjusted regression.
• Adjustment sets depend on the causal structure,
which can be represented by a graph.

Emilija Perković, ETH Zurich Characterizing and constructing adjustment sets 7 / 23



What is an adjustment set?

•

(causal)

DAG:

(causal)

Directed Acyclic Graph.

• A prob. density f is compatible with the

causal

DAG D = (V,E) if:
f (v) =

∏p
j=1 f (xj|pa(xj,D))

and f (v|do(x)) =
∏

Xj∈V\X f (xj|pa(xj,D)).

• S is an adjustment set relative to (X,Y) in causal DAG D if for
any f compatible with D:

f (y|do(x)) =
{
f (y|x) if S = ∅,∫
S f (y|x,s)f (s)ds = ES{f (y|x,s)} otherwise.

• The total causal effect of X on Y can be defined: ∂
∂xE(Y|do(x)).

• In a linear setting the total causal effect of X on Y is then the
linear regression coefficient of X in the regression Y ∼ X + S.
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Which sets S are adjustment sets?

Adjusting for too many or too few variables leads to bias.

Some intuition for DAGs:

(1) X Z Y

(2) X Z Y

(3) X Z Y

(4) X Z Y

Answer: (1) ∅; (2) {Z}; (3) {Z}; (4) ∅

Do not disturb causal (=directed) paths,
and block all non-causal paths
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Which sets S are adjustment sets?

Some more intuition:

X Z1 Y

Z2 Z3 Z4

Answer: ∅ or {Z2}
Descendants of nodes on a causal path (except of X) are
forbidden.
(Each node is a descendant of itself)
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R example

X Z1
0.8

Y
2

Z2 Z3 Z4

n <- 100000
eps <- matrix(rnorm(6*n,0,1), ncol=6)
X <- eps[,1]
Z1 <- 0.8*X + eps[,2]
Y <- 2*Z1 + eps[,3]
Z2 <- X + eps[,4]
Z3 <- Z1 + eps[,5]
Z4 <- Y + eps[,6]

The total effect of X on Y is 0.8 · 2 = 1.6.
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R example

X Z1
0.8

Y
2

Z2 Z3 Z4

> lm(Y~X)$coeff[2]
1.598732
> lm(Y~X+Z1)$coeff[2]
0.003260167
> lm(Y~X+Z2)$coeff[2]
1.596347
> lm(Y~X+Z3)$coeff[2]
0.7985709
> lm(Y~X+Z4)$coeff[2]
0.2730853
> lm(Y~X+Z2+Z3)$coeff[2]
0.7996412
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Existing results for DAGs

• Back-door criterion (Pearl, 1993)
- sufficient

• Adjustment criterion (Shpitser et al, 2010)
- necessary and sufficient

Given a DAG D, disjoint sets X,Y and S can check whether S
satisfies back-door/adjustment criterion.

• The adjustment criterion will give you all adjustment sets.
• The back-door criterion will give you some adjustment
sets.
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We cannot always learn a DAG

DAG:

X1

X2

X3

X4

X5

Unknown causal directions
(CPDAG):

X1

X2

X3

X4

X5

Unobserved confounders (MAG):

X1 X3 X5

Unobserved confounders and
unknown causal directions (PAG):

X1 X3 X5

Can be learned from observational data.
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Focus on CPDAGs and PAGs

Observational
data:

no cycles,
no selection bias,
latent confounders.

Causal
graph:

DAG,
CPDAG,
MAG,
PAG.

Learn the
causal structure:

PC, GES, ARGES,
FCI, RFCI,FCI+,...

Estimate total
causal effect:

use Y ∼ X + S,
or adjustment

formula.

Graphically find
adjustment set S.

• CPDAG: PC (Spirtes et al, 1993), GES (Chickering, 2002),
ARGES (Nandy et al, 2016).

• PAG: FCI (Spirtes et al 1993, Zhang 2008), RFCI (Colombo et al,
2012), FCI+ (Claassen et al, 2013).
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Overview of graphical criteria for adjustment

DAG MAG CPDAG PAG

Back-door (Pearl ’93) ⇒

Adjustment (Shpitser et al ’10) ⇔
Adjustment (Van der Zander et al ’14) ⇔ ⇔
Generalized back-door (Maathuis & Colombo ’15) ⇒ ⇒ ⇒ ⇒

Generalized adjustment (Perkovic et al ’15) ⇔ ⇔ ⇔ ⇔

Can be learned from
observational data

⇒ - sufficient,⇔ - necessary and sufficient
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Generalized adjustment criterion

Theorem (Perković et al, 2015):
S is an adjustment set relative to (X,Y) and G if:

Amenability G is amenable relative to (X,Y).
Forbidden Set S does not contain nodes in

Forbidden(X,Y,G).
Blocking S blocks all proper non-causal definite

status paths from X to Y in G.

For any DAG/CPDAG/MAG/PAG G and node sets X,Y and S, we
can check whether S is an adjustment set relative to (X,Y).
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Further questions

R package dagitty on CRAN.

(1) Does an adjustment set always exist?

No.

Theorem (Perković et al, 2016)
There exists an adjustment set relative to (X,Y) and G if and
only if adjustmentSets(G,X,Y,type="canonical") returns
a set.

(2) Can we construct adjustment sets using a fast algorithm?

Yes.
Van der Zander et al, 2014 for DAGs and MAGs.
Perković et al, 2016 for CPDAGs and PAGs.
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Implementation

Algorithms implemented in R package dagitty on CRAN:

• adjustmentSets(G,X,Y,type="canonical")
runs in O(|V|+|E|) runtime.

• isAdjustmentSet(G,S,X,Y) checks whether S is an
adjustment set for (X,Y) and G in O(|V|+|E|) runtime.

• adjustmentSets(G,X,Y,type="all") lists all (or all
minimal, if type="minimal") adjustment sets for (X,Y) and
G in O(|V|(|V|+|E|)) runtime per set.
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Our contribution

For CPDAGs and PAGs G = (V,E) - the output of most causal
structure learning algorithms - we developed:

• A necessary and sufficient graphical criterion for finding
adjustment sets.

• An algorithm that finds an adjustment set relative to (X,Y)
if there is one in O(|V|+|E|) runtime.

• An algorithm that finds all (minimal) adjustment sets
relative to (X,Y) in O(|V|(|V|+|E|)) runtime per set.
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Thanks!
Joint work with
Marloes Maathuis, Markus Kalisch, Johannes Textor
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