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What is an adjustment set?

• (causal) DAG: (causal) Directed Acyclic Graph.

• A probability density f is compatible with the causal DAG D if:
f (v) =

∏p
j=1 f (xj|pa(xj,D)) and f (v|do(x)) =

∏
Xj∈V\X f (xj|pa(xj,D)).

• Z is a valid adjustment set if relative to (X,Y) and any f
compatible with D:
f (y|do(x)) =

∫
Z f (y|x,z)f (z)dz.

• In a causal linear model, if Z a valid adjustment set then the
total effect of X on Y is the coefficient βyx.z of X in the
regression Y ∼ X + Z.
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• Perković, Textor, Kalisch and Maathuis (2015). A Complete Generalized Adjustment
Criterion. UAI 2015.

• Perković, Textor, Kalisch and Maathuis (2018). Complete Graphical Characterization and
Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs.
Journal of Machine Learning Research, to appear.

• Perković, Kalisch and Maathuis (2017). Interpreting and Using CPDAGs with Background
Knowledge. UAI 2017.

• Henckel, Perković, and Maathuis (2018). Graphical Criteria for Efficient Total Effect
Estimation via Adjustment in Causal Linear Structural Equation Models. Working paper.
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Generalized adjustment criterion

Theorem (Perković et al., 2015, 2017, 2018):
Z is a valid adjustment set relative to (X,Y) and G if:

Amenability G is amenable relative to (X,Y).
Forbidden Set Z does not contain nodes in Forbidden(X,Y,G).

Blocking Z blocks all proper non-causal definite status paths
from X to Y.

In a causal linear model, if Z a valid adjustment set then the total effect of
X on Y is the coefficient βyx.z of X in the regression Y ∼ X + Z.

• We have algorithms to list all valid adjustment sets (see
adjustment() in R package pcalg.)

• All of them will provide consistent estimators of the total
effect, but which one will be asymptotically most efficient?
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Example: efficient estimates
Directed acyclic graph (DAG) with weighted edges:

X E YD

A B C

0.8 2

1
1

1
1

1

τyx = 0.8 · 2 = 1.6

AS mean var
∅ 2.27 3.57
A 2.60 4.92
B 1.60 4.53
C 2.27 2.21
D 2.27 2.89
E 0.00 0.82

A+B 1.60 8.96
B+C 1.60 2.52
B+D 1.60 3.53
B+E 0.00 0.83

A+B+C 1.60 5.04

Z VAS:
• B ∈ Z
• E /∈ Z
• A,C,D may be in Z

So total of 8 VAS here!

Variance varies significantly:
• pa(X,G) = {A,B} bad
• minimal set {B} average
• {B,C} best
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Asymptotic variance formula

• (X,Y,Z) joint normal, then
√
n(β̂yx.z − βyx.z)

D−→ N (0, σyy.xzσxx.z
).

• If Z a VAS wrt (X,Y), then
√
n(β̂yx.z − τyx)

D−→ N (0, σyy.xzσxx.z
),

a.var(β̂yx.z) = a.var(τ̂zyx) =
σyy.xz
σxx.z

Remark: This is not trivial in the non-Gaussian case.
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Intuition

Goal: Minimize a.var(τ̂zyx) =
σyy.xz
σxx.z

:

• minimize σyy.xz = Var(Y − βyx.zX − βTyz.xZ)
• maximize σxx.z = Var(X − βTxzZ)

X E Y

D

A B C Z a VAS:
• B ∈ Z, E /∈ Z
• A ⊥G Y|(Z \ A) ∪ X
• D ⊥G Y|(Z \D) ∪ X
• C ⊥G X|Z \ C
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Variance with random edge coefficients

X E YD

A B C

AS Case 1 Case 2 Case 3
{A,B} 5.38 5.47 0.85

{A,B,C} 1.44 4.44 0.51
{B} 3.49 4.40 0.54

{B,C} 0.94 3.58 0.32
{A,B,D} 7.20 7.39 12.65

{A,B,C,D} 1.93 6.01 7.59
{B,D} 5.31 6.33 12.34

{B,C,D} 1.42 5.15 7.41

• A,D increase variance
• C decreases variance
• {A,B,D} is worst set
• {B,C} is best set
• not all comparisons
are consistent
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Main results

• Graphical criterion for qualitative asymptotic variance
comparison

• Variance reducing pruning procedure

• Asymptotically optimal valid adjustment set (does not
hold in the hidden variable setting)

Remark: The results are in presented in the simplified form
for singleton X and Y and DAGs, but also hold for joint
interventions and more general graphs (CPDAGs, maximally
oriented PDAGs, MAGs PAGs).
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Variance comparison criterion

Asymptotic variance comparison criterion:
Z1 and Z2 VAS wrt (X,Y) in a DAG G = (V,E), such that
• Z1 \ Z2 ⊥G Y|Z2 ∪ X
• Z2 \ Z1 ⊥G X|Z1,

then a.var(τ̂z2yx ) ≤ a.var(τ̂z1yx ).
• ⊥G indicates d-separation

Remark: This is an extension to non-disjoint sets (Kuroki and
Cai, 2004) of size larger than 2 (Kuroki and Miyakawa, 2003)
and to arbitrary error types.
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Pruning procedure

input : Causal DAG G, disjoint node sets X and Y and a VAS Z
output: VAS Z′ ⊆ Z, such that a.var(τ̂ z′yx) ≤ a.var(τ̂ zyx)

1 begin
2 Z′ = Z;
3 foreach Z ∈ Z′ do
4 if Y ⊥G Z|Z′−z ∪ X and Z′−z is a VAS then
5 Z′ = Z′−z;

6 return Z′;

i) order independent
ii) no other VAS Z′′ ⊆ Z is assured a better asymptotic variance
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The optimal VAS

Definition: O(X,Y,G) = pa(cn(X,Y,G),G) \ forb(X,Y,G)

X,Y two nodes in causal DAG G = (V,E), such that Y ∈ de(X,G).
Then

(Validity) If a VAS exists, O is one.
(Optimality) For any VAS Z

a.var(τ̂oyx) ≤ a.var(τ̂zyx).

(Minimality) If a.var(τ̂oyx) = a.var(τ̂zyx) and we assume
faithfulness, then O ⊆ Z.

Remark: If Y /∈ de(X,G), then τyx = 0.
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Example: the optimal VAS

X

V

D

A1 A2

Y

R

B2B1 F

• cn(X,Y,G) = {Y}
• forb(X,Y,G) = {X,Y,F}
• pa(cn(X,Y,G),G) = {X,A2,B2,R}
• O(X,Y,G) = {A2,B2,R}
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Quantifying the practical efficiency gain
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Ratio of MSE with est. CPDAG

5000 random settings:
100 data sets sampled,
empirical MSE computed

X - randomly chosen,
Y - descendant of X

pa : pa(X,G),
em : ∅,
O : O(X,Y,G),
adj : adjust(X,Y,G)
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Joint interventions
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Ratio of MSE with est. CPDAG

5000 random settings:
100 data sets sampled,
empirical MSE computed

X - randomly chosen,
Y - descendant of
each Xi ∈ X

pa : pa(X,G),
em : ∅,
O : O(X,Y,G),
adj : adjust(X,Y,G)
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Summary

• Graphical criterion for qualitative asymptotic variance
comparisons

• Variance decreasing pruning procedure

• Asymptotically optimal VAS

Thanks!

Emilija Perković, University of Washington Valid adjustment set selection 26 / 26



Summary

• Graphical criterion for qualitative asymptotic variance
comparisons

• Variance decreasing pruning procedure

• Asymptotically optimal VAS

Thanks!

Emilija Perković, University of Washington Valid adjustment set selection 26 / 26


