Graphical criteria for efficient total effect estimation in causal linear models

Emilija Perković, University of Washington

Joint work with Leonard Henckel, Marloes H. Maathuis ETH Zurich

Emilija Perković, University of Washington

Figure: DAG \mathcal{D} .

Figure: Use the back-door criterion (Pearl, 1993) or the adjustment criterion (Shpitser et. al, 2012) on DAG \mathcal{D} .

Figure: Use the back-door criterion (Pearl, 1993) or the adjustment criterion (Shpitser et. al, 2012) on DAG \mathcal{D} .

What is an adjustment set?

- (causal) DAG: (causal) Directed Acyclic Graph.
- A probability density f is compatible with the causal DAG \mathcal{D} if: $f(\mathbf{v}) = \prod_{j=1}^{p} f(x_j | pa(x_j, \mathcal{D}))$ and $f(\mathbf{v} | do(\mathbf{x})) = \prod_{x_j \in \mathbf{V} \setminus \mathbf{X}} f(x_j | pa(x_j, \mathcal{D})).$

What is an adjustment set?

- (causal) DAG: (causal) Directed Acyclic Graph.
- A probability density f is compatible with the causal DAG \mathcal{D} if: $f(\mathbf{v}) = \prod_{j=1}^{p} f(x_j | pa(x_j, \mathcal{D}))$ and $f(\mathbf{v} | do(\mathbf{x})) = \prod_{x_j \in \mathbf{V} \setminus \mathbf{X}} f(x_j | pa(x_j, \mathcal{D})).$
- Z is a valid adjustment set if relative to (X, Y) and any f compatible with D:

 $f(\mathbf{y}|do(\mathbf{x})) = \int_{\mathbf{Z}} f(\mathbf{y}|\mathbf{x}, \mathbf{z}) f(\mathbf{z}) d\mathbf{z}.$

What is an adjustment set?

- (causal) DAG: (causal) Directed Acyclic Graph.
- A probability density f is compatible with the causal DAG \mathcal{D} if: $f(\mathbf{v}) = \prod_{j=1}^{p} f(x_j | pa(x_j, \mathcal{D}))$ and $f(\mathbf{v} | do(\mathbf{x})) = \prod_{x_j \in \mathbf{V} \setminus \mathbf{X}} f(x_j | pa(x_j, \mathcal{D})).$
- Z is a valid adjustment set if relative to (X, Y) and any f compatible with D:

$$f(\mathbf{y}|do(\mathbf{x})) = \int_{\mathbf{Z}} f(\mathbf{y}|\mathbf{x}, \mathbf{z}) f(\mathbf{z}) d\mathbf{z}.$$

In a causal linear model, if Z a valid adjustment set then the total effect of X on Y is the coefficient β_{yx,z} of X in the regression Y ~ X + Z.

Figure: DAG \mathcal{D} .

Figure: CPDAG C of DAG D.

Figure: PDAG of DAG \mathcal{D} .

Figure: PDAG of DAG \mathcal{D} .

Figure: CPDAG C of DAG D.

- Perković, Textor, Kalisch and Maathuis (2015). A Complete Generalized Adjustment Criterion. UAI 2015.
- Perković, Textor, Kalisch and Maathuis (2018). Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs. Journal of Machine Learning Research, to appear.
- Perković, Kalisch and Maathuis (2017). Interpreting and Using CPDAGs with Background Knowledge. UAI 2017.
- Henckel, Perković, and Maathuis (2018). Graphical Criteria for Efficient Total Effect Estimation via Adjustment in Causal Linear Structural Equation Models. Working paper.

Generalized adjustment criterion

Theorem (Perković et al., 2015, 2017, 2018): **Z** is a valid adjustment set relative to (\mathbf{X}, \mathbf{Y}) and \mathcal{G} if: Amenability \mathcal{G} is **amenable** relative to (\mathbf{X}, \mathbf{Y}) .

Forbidden Set **Z** does not contain nodes in Forbidden(X, Y, G).

Blocking Z blocks all proper non-causal definite status paths from X to Y.

In a causal linear model, if **Z** a valid adjustment set then the total effect of X on Y is the coefficient $\beta_{yx,z}$ of X in the regression $Y \sim X + Z$.

Generalized adjustment criterion

Theorem (Perković et al., 2015, 2017, 2018): Z is a valid adjustment set relative to (X, Y) and \mathcal{G} if: Amenability \mathcal{G} is **amenable** relative to (X, Y). Forbidden Set Z does not contain nodes in Forbidden (X, Y, \mathcal{G}) . Blocking Z blocks all proper non-causal definite status paths from X to Y.

In a causal linear model, if **Z** a valid adjustment set then the total effect of X on Y is the coefficient $\beta_{yx,z}$ of X in the regression $Y \sim X + Z$.

• We have algorithms to list all valid adjustment sets (see adjustment() in R package pcalg.)

Generalized adjustment criterion

Theorem (Perković et al., 2015, 2017, 2018): Z is a valid adjustment set relative to (X, Y) and \mathcal{G} if: Amenability \mathcal{G} is **amenable** relative to (X, Y). Forbidden Set Z does not contain nodes in Forbidden (X, Y, \mathcal{G}) . Blocking Z blocks all proper non-causal definite status paths from X to Y.

In a causal linear model, if **Z** a valid adjustment set then the total effect of X on Y is the coefficient $\beta_{yx,z}$ of X in the regression $Y \sim X + Z$.

- We have algorithms to list all valid adjustment sets (see adjustment() in R package pcalg.)
- All of them will provide consistent estimators of the total effect, but which one will be asymptotically most efficient?

Example: efficient estimates

Directed acyclic graph (DAG) with weighted edges:

$$\tau_{yx} = 0.8 \cdot 2 = 1.6$$

Emilija Perković, University of Washington

Example: efficient estimates

Directed acyclic graph (DAG) with weighted edges:

AS	mean	var
Ø	2.27	3.57
А	2.60	4.92
В	1.60	4.53
С	2.27	2.21
D	2.27	2.89
E	0.00	0.82
A+B	1.60	8.96
B+C	1.60	2.52
B+D	1.60	3.53
B+E	0.00	0.83
A+B+C	1.60	5.04

$$\tau_{yx} = 0.8 \cdot 2 = 1.6$$

Z VAS:

• *A*,*C*,*D* may be in **Z**

So total of 8 VAS here!

Variance varies significantly:

- *pa*(*X*, *G*) = {*A*, *B*} bad
- minimal set {B} average
- {*B*,*C*} best

Asymptotic variance formula

• (X, Y, \mathbf{Z}) joint normal, then $\sqrt{n}(\hat{\beta}_{yx,z} - \beta_{yx,z}) \xrightarrow{D} \mathcal{N}(0, \frac{\sigma_{yy,xz}}{\sigma_{xx,z}})$.

Asymptotic variance formula

- (X, Y, \mathbf{Z}) joint normal, then $\sqrt{n}(\hat{\beta}_{yx,z} \beta_{yx,z}) \xrightarrow{D} \mathcal{N}(0, \frac{\sigma_{yy,xz}}{\sigma_{xx,z}})$.
- If **Z** a VAS wrt (X, Y), then $\sqrt{n}(\hat{\beta}_{yx,z} \tau_{yx}) \xrightarrow{D} \mathcal{N}(0, \frac{\sigma_{yy,xz}}{\sigma_{xx,z}})$,

$$a.var(\hat{eta}_{yx,z}) = a.var(\hat{ au}_{yx}^{z}) = rac{\sigma_{yy,xz}}{\sigma_{xx,z}}$$

Remark: This is not trivial in the non-Gaussian case.

Emilija Perković, University of Washington

Intuition

Goal: Minimize $a.var(\hat{\tau}_{yx}^z) = \frac{\sigma_{yy.xz}}{\sigma_{xx.z}}$:

• minimize $\sigma_{yy,xz} = Var(Y - \beta_{yx,z}X - \beta_{yz,x}^T Z)$

• maximize
$$\sigma_{xx.z} = Var(X - \beta_{xz}^T Z)$$

Intuition

Goal: Minimize $a.var(\hat{\tau}_{yx}^{z}) = \frac{\sigma_{yy.xz}}{\sigma_{xx.z}}$:

- minimize $\sigma_{yy,xz} = Var(Y \beta_{yx,z}X \beta_{yz,x}^T Z)$
- maximize $\sigma_{XX,z} = Var(X \beta_{Xz}^T Z)$

Z a VAS:

- *B* ∈ **Z**, *E* ∉ **Z**
- $A \perp_{\mathcal{G}} Y | (\mathbf{Z} \setminus A) \cup X$
- $D \perp_{\mathcal{G}} Y | (\mathbf{Z} \setminus D) \cup X$
- $C \perp_{\mathcal{G}} X | \mathbf{Z} \setminus C$

AS	Case 1	Case 2	Case 3
{ A , B }	5.38	5.47	0.85
{ <i>A</i> , <i>B</i> , <i>C</i> }	1.44	4.44	0.51
{ B }	3.49	4.40	0.54
{ <i>B</i> , <i>C</i> }	0.94	3.58	0.32
{ A , B , D }	7.20	7.39	12.65
$\{A, B, C, D\}$	1.93	6.01	7.59
{ B , D }	5.31	6.33	12.34
$\{B, C, D\}$	1.42	5.15	7.41

- A, D increase variance
- C decreases variance
- {A, B, D} is worst set
- {*B*,*C*} is best set
- not all comparisons are consistent

AS	Case 1	Case 2	Case 3
{ A , B }	5.38	5.47	0.85
{ <i>A</i> , <i>B</i> , <i>C</i> }	1.44	4.44	0.51
{ B }	3.49	4.40	0.54
{ <i>B</i> , <i>C</i> }	0.94	3.58	0.32
$\{A, B, D\}$	7.20	7.39	12.65
$\{A, B, C, D\}$	1.93	6.01	7.59
{ B , D }	5.31	6.33	12.34
$\{B, C, D\}$	1.42	5.15	7.41

- A, D increase variance
- C decreases variance
- {A, B, D} is worst set
- {*B*,*C*} is best set
- not all comparisons are consistent

AS	Case 1	Case 2	Case 3
{ A , B }	5.38	5.47	0.85
{ <i>A</i> , <i>B</i> , <i>C</i> }	1.44	4.44	0.51
{ B }	3.49	4.40	0.54
{ <i>B</i> , <i>C</i> }	0.94	3.58	0.32
$\{A, B, D\}$	7.20	7.39	12.65
{ <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> }	1.93	6.01	7.59
{ B , D }	5.31	6.33	12.34
{ <i>B</i> , <i>C</i> , <i>D</i> }	1.42	5.15	7.41

- A, D increase variance
- C decreases variance
- {A, B, D} is worst set
- {*B*,*C*} is best set
- not all comparisons are consistent

AS	Case 1	Case 2	Case 3
{ A , B }	5.38	5.47	0.85
{ <i>A</i> , <i>B</i> , <i>C</i> }	1.44	4.44	0.51
{ B }	3.49	4.40	0.54
{ <i>B</i> , <i>C</i> }	0.94	3.58	0.32
$\{A, B, D\}$	7.20	7.39	12.65
{ <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> }	1.93	6.01	7.59
{ B , D }	5.31	6.33	12.34
$\{B, C, D\}$	1.42	5.15	7.41

- A, D increase variance
- C decreases variance
- {A, B, D} is worst set
- {*B*,*C*} is best set
- not all comparisons are consistent

Main results

 Graphical criterion for qualitative asymptotic variance comparison

- Graphical criterion for qualitative asymptotic variance comparison
- Variance reducing pruning procedure

- Graphical criterion for qualitative asymptotic variance comparison
- Variance reducing pruning procedure
- Asymptotically optimal valid adjustment set (does not hold in the hidden variable setting)

- Graphical criterion for qualitative asymptotic variance comparison
- Variance reducing pruning procedure
- Asymptotically optimal valid adjustment set (does not hold in the hidden variable setting)

Remark: The results are in presented in the simplified form for singleton X and Y and DAGs, but also hold for joint interventions and more general graphs (CPDAGs, maximally oriented PDAGs, MAGs PAGs).

Asymptotic variance comparison criterion:

 Z_1 and Z_2 VAS wrt (X, Y) in a DAG $\mathcal{G} = (\mathbf{V}, \mathbf{E})$, such that

- $\mathbf{Z_1} \setminus \mathbf{Z_2} \perp_{\mathcal{G}} Y | \mathbf{Z_2} \cup X$
- $\mathbf{Z_2} \setminus \mathbf{Z_1} \perp_{\mathcal{G}} X | \mathbf{Z_1},$

then $a.var(\hat{\tau}_{yx}^{\mathbf{Z}_2}) \leq a.var(\hat{\tau}_{yx}^{\mathbf{Z}_1}).$

• $\perp_{\mathcal{G}}$ indicates d-separation

Remark: This is an extension to non-disjoint sets (Kuroki and Cai, 2004) of size larger than 2 (Kuroki and Miyakawa, 2003) and to arbitrary error types.

input : Causal DAG \mathcal{G} , disjoint node sets X and Y and a VAS Z **output:** VAS Z' \subseteq Z, such that $a.var(\hat{\tau}_{vx}^{z'}) \leq a.var(\hat{\tau}_{vx}^{z})$

1 begin 2 Z' = Z;3 foreach $Z \in Z'$ do 4 $If Y \perp_{\mathcal{G}} Z | Z'_{-z} \cup X$ and Z'_{-z} is a VAS then 5 $Z' = Z'_{-z};$ 6 return Z';

i) order independent ii) no other VAS $\mathbf{Z}'' \subseteq \mathbf{Z}$ is assured a better asymptotic variance

The optimal VAS

Definition: $O(X, Y, G) = pa(cn(X, Y, G), G) \setminus forb(X, Y, G)$

Definition: $O(X, Y, G) = pa(cn(X, Y, G), G) \setminus forb(X, Y, G)$

X, *Y* two nodes in causal DAG $\mathcal{G} = (\mathbf{V}, \mathbf{E})$, such that $Y \in de(X, \mathcal{G})$. Then

(Validity) If a VAS exists, O is one. (Optimality) For any VAS Z

 $a.var(\hat{\tau}_{yx}^{o}) \leq a.var(\hat{\tau}_{yx}^{z}).$

Definition: $O(X, Y, G) = pa(cn(X, Y, G), G) \setminus forb(X, Y, G)$

X, *Y* two nodes in causal DAG $\mathcal{G} = (\mathbf{V}, \mathbf{E})$, such that $Y \in de(X, \mathcal{G})$. Then

(Validity) If a VAS exists, O is one. (Optimality) For any VAS Z

 $a.var(\hat{\tau}_{yx}^{\mathbf{0}}) \leq a.var(\hat{\tau}_{yx}^{\mathbf{z}}).$

(Minimality) If $a.var(\hat{\tau}_{yx}^{o}) = a.var(\hat{\tau}_{yx}^{z})$ and we assume faithfulness, then $O \subseteq Z$.

Remark: If $Y \notin de(X, \mathcal{G})$, then $\tau_{yx} = 0$.

Example: the optimal VAS

- $cn(X,Y,\mathcal{G}) = \{Y\}$
- $forb(X, Y, G) = \{X, Y, F\}$
- $pa(cn(X, Y, G), G) = \{X, A_2, B_2, R\}$
- $O(X, Y, G) = \{A_2, B_2, R\}$

Quantifying the practical efficiency gain

5000 random settings: 100 data sets sampled, empirical MSE computed

X - randomly chosen, Y - descendant of X

```
pa : pa(X, G),
em : Ø,
O : O(X,Y,G),
adj : adjust(X,Y,G)
```

Joint interventions

5000 random settings: 100 data sets sampled, empirical MSE computed

 \mathbf{X} - randomly chosen, Y - descendant of each $X_i \in \mathbf{X}$

```
pa : pa(X, G),
em : ∅,
O : O(X, Y, G),
adj : adjust(X, Y, G)
```

- Graphical criterion for qualitative asymptotic variance comparisons
- Variance decreasing pruning procedure
- Asymptotically optimal VAS

- Graphical criterion for qualitative asymptotic variance comparisons
- Variance decreasing pruning procedure
- Asymptotically optimal VAS

Thanks!