Identifying causal effects in MPDAGs

Emilija Perković University of Washington

- Identify the total causal effect of X on Y

 the change in Y due to do(x) from observational data.
- $do(\mathbf{x})$: an intervention that sets variables **X** to **x**. $f(\mathbf{y}|do(\mathbf{x})) \neq f(\mathbf{y}|\mathbf{x})$.

Observational data

Randomized control studies

DAGs and distributions

- do(x): an intervention that sets variables X to x.
- Observational density $f(\mathbf{v})$, Interventional density $f(\mathbf{v}|do(\mathbf{x}))$.
- A DAG \mathcal{D} is causal if for all observational and interventional densities:

f(b, x, y) = f(y|b, x)f(x|b)f(b)

f(b, y|do(x)) = f(y|b, x)f(b)

How to define a causal effect?

Total causal effect

- Total causal effect τ_{yx} is some functional of f(y|do(x)), P(Y|do(x)).
- Examples: $E[Y|do(X = x + 1)] E[Y|do(X = x)], \frac{\partial}{\partial x}E(Y|do(x)), OR, RR...$

Identifiability

A causal effect is identifiable from observational data if

 $f(\mathbf{y}|do(\mathbf{x}))$ is computable from $f(\mathbf{v})$.

• Given the causal DAG, every total causal effect is identifiable.

 $\mathsf{DAG}\ \mathcal{D}.$

Maximally oriented Partially Directed Acyclic Graph (MPDAG) G.

Overview of graphical criteria for identification

Graphical criterion	DAG	CPDAG	MPDAG
Generalized adjustment (Shpitser et al '10, Perković et al '15, '17, '18)	\Rightarrow	\Rightarrow	\Rightarrow
G-formula (Robins '86)	\Leftrightarrow		
Causal identification formula (Perković '20)	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow

 \Rightarrow - sufficient for identification,

 \Rightarrow – necessary and sufficient for identification

G-formula: Let $\mathbf{V}' = \mathbf{V} \setminus {\mathbf{X} \cup \mathbf{Y}}$, then

$$f(\mathbf{y}|do(\mathbf{x})) = \int \prod_{V_i \in \mathbf{V} \setminus \mathbf{X}} f(v_i|pa(v_i, \mathcal{D})) d\mathbf{v}'.$$

Theorem (Perković, 2020)

If all proper possibly causal paths from X to Y start with a directed edge in G, then

$$f(\mathbf{y}|do(\mathbf{x})) = \int \prod_{i=1}^{k} f(\mathbf{s}_{i}|pa(\mathbf{s}_{i}, \mathcal{G})) d\mathbf{s},$$

where $S = an(Y, \mathcal{G}_{V \setminus X}) \setminus Y$, and (S_1, \dots, S_k) is a partition of $S \cup Y$ into undirected connected sets in \mathcal{G} .

- $\mathbf{S} \cup \mathbf{Y} = an(\mathbf{Y}, \mathcal{G}_{\mathbf{V} \setminus \mathbf{X}})$ nodes that have a causal path to \mathbf{Y} that is not through \mathbf{X} .
- (S_1, \ldots, S_k) maximal connected components of $S \cup Y$ in the induced undirected subgraph of \mathcal{G} .

$f(y|do(x_1, x_2)) = ?$

• $\mathbf{S} = an(Y, \mathcal{G}_{\mathbf{V} \setminus \mathbf{X}}) \setminus \{Y\} = \{A, B, C, D\}$, Partition of $\mathbf{S} \cup \{Y\} = \{A, B, C, D\}$

$f(y|do(x_1, x_2)) = ?$

• $\mathbf{S} = an(Y, \mathcal{G}_{\mathbf{V} \setminus \mathbf{X}}) \setminus \{Y\} = \{A, B, C, D\}$, Partition of $\mathbf{S} \cup \{Y\} = (\{B, C, D\}, \{A\}, \{Y\})$.

$f(y|do(x_1, x_2)) = ?$

• $\mathbf{S} = an(Y, \mathcal{G}_{\mathbf{V} \setminus \mathbf{X}}) \setminus \{Y\} = \{A, B, C, D\}$, Partition of $\mathbf{S} \cup \{Y\} = (\{B, C, D\}, \{A\}, \{Y\})$.

$$f(y|do(x_1, x_2)) = \int f(y|a, b, c, d, x_2) f(a|b, d, x_1) f(b, c, d) ds$$

- A necessary condition for identification of $f(\mathbf{y}|do(\mathbf{x}))$.
- Necessary and sufficient graphical criterion for identification of causal effects.
- Proposition on the "necessity" of adjustment.
- Slides, both long and short version, on my webpage: https://emilijaperkovic.com/projects/

Thanks!