Identifying causal effects from observational data

Emilija Perković University of Washington

- Estimate the total causal effect of X on Y

 the change in Y due to do(x) from observational data.
- $do(\mathbf{x})$: an intervention that sets variables **X** to **x**. $f(\mathbf{y}|do(\mathbf{x})) \neq f(\mathbf{y}|\mathbf{x})$.

Observational data

Randomized control studies

Observational Causal DAG

Causal Directed Acyclic Graph (DAG) \mathcal{D} .

Interventional Causal DAG

Causal DAG D after a "do"-intervention on X_1 .

DAGs and distributions

Interventional density

- do(x): an intervention that sets variables X to x.
- Observational density $f(\mathbf{v})$, Interventional density $f(\mathbf{v}|do(\mathbf{x}))$.
- A DAG \mathcal{D} is causal if for all observational and interventional densities:

 $f(\mathbf{v}) = \prod f(v_j | pa(v_j, D))$ and $f(\mathbf{v} | do(\mathbf{x})) = \prod f(v_j | pa(v_j, D)).$ $V_i \in \mathbf{V}$ $V_i \in \mathbf{V} \setminus \mathbf{X}$ В В

f(b, x, y) = f(y|b, x)f(x|b)f(b)

f(b, v|do(x)) = f(v|b, x)f(b)

 $f(b, y|x) = f(y|b, x)f(b|x) \neq f(b, y|do(x))$

How to define a causal effect?

Total causal effect

- Total causal effect τ_{yx} is some functional of f(y|do(x)), P(Y|do(x)).
- Examples: $E[Y|do(X = x + 1)] E[Y|do(X = x)], \frac{\partial}{\partial x}E(Y|do(x)), OR, RR...$

Identifiability

A causal effect is identifiable from observational data if

 $f(\mathbf{y}|do(\mathbf{x}))$ is computable from $f(\mathbf{v})$.

• Given the causal DAG, every total causal effect is identifiable.

Maximally oriented Partially Directed Acyclic Graph (MPDAG) G.

- PC (Spirtes et al, 1993), GES (Chickering, 2002)
- Adding background knowledge (Meek, 1995; TETRAD, Scheines et al., 1998), PC LINGAM (Hoyer et al., 2008), GIES (Hauser and Bühlmann, 2012), IGSP (Wang et al., 2017), etc.

Overview of graphical criteria for identification

Graphical criterion	DAG	CPDAG	MPDAG
Generalized adjustment (Shpitser et al '10, Perković et al '15, '17, '18)	\Rightarrow	\Rightarrow	\Rightarrow
G-formula (Robins '86)	\Leftrightarrow		

 \Rightarrow - sufficient for identification,

 \Leftrightarrow - necessary and sufficient for identification

Adjustment: Z is an adjustment set if

$$f(\mathbf{y}|do(\mathbf{x})) = \int f(\mathbf{y}|\mathbf{x},\mathbf{z})f(\mathbf{z})d\mathbf{z}$$

G-formula: Let $\mathbf{V}' = \mathbf{V} \setminus {\mathbf{X} \cup \mathbf{Y}}$, then

$$f(\mathbf{y}|do(\mathbf{x})) = \int \prod_{V_i \in \mathbf{V} \setminus \mathbf{X}} f(v_i|pa(v_i, \mathcal{D})) d\mathbf{v}'.$$

If $\mathbf{X} = \{X\}$, $\mathbf{Y} = \{Y\}$:

Proposition (Perković, 2020)

If $Y \notin Pa(X, \mathcal{G})$, then an adjustment set relative to (X, Y) exists in the MPDAG \mathcal{G} , if and only if the f(y|do(x)) is identifiable given \mathcal{G} .

What about for $|\mathbf{X}| > 1$, or $|\mathbf{Y}| > 1$? Does an adjustment set always exist?

No. Not even in a DAG.

Joint Intervention

Joint intervention

Overview of graphical criteria for identification

Graphical criterion	DAG	CPDAG	MPDAG
Generalized adjustment (Shpitser et al '10, Perković et al '15, '17, '18)	\Rightarrow	\Rightarrow	\Rightarrow
G-formula (Robins '86)	\Leftrightarrow		
Causal identification formula (Perković '20)	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow

 \Rightarrow - sufficient for identification,

 \Leftrightarrow - necessary and sufficient for identification

Theorem (Perković, 2020)

If all proper possibly causal paths from X to Y start with a directed edge in \mathcal{G} , then

$$f(\mathbf{y}|do(\mathbf{x})) = \int \prod_{i=1}^{k} f(\mathbf{s}_{i}|pa(\mathbf{s}_{i}, \mathcal{G}))d\mathbf{s},$$

where $S = an(Y, \mathcal{G}_{V \setminus X}) \setminus Y$, and (S_1, \dots, S_k) is a partition of $S \cup Y$ into undirected connected sets in \mathcal{G} .

- $S \cup Y = an(Y, \mathcal{G}_{V \setminus X})$ nodes that have a causal path to Y that is not through X.
- $({\bf S_1},\ldots,{\bf S_k})$ maximal connected components of ${\bf S}\cup{\bf Y}$ in the induced undirected subgraph of ${\cal G}.$

How to use the causal identification formula?

 $f(y|do(x_1, x_2)) = \int f(y|a, b, c, d, x_2) f(a|b, d, x_1) f(b, c, d) da \, db \, dc \, dd$

$f(y|do(x_1, x_2)) = ?$

• $\mathbf{S} = an(Y, \mathcal{G}_{\mathbf{V} \setminus \mathbf{X}}) \setminus \{Y\} = \{A, B, C, D\}$, Partition of $\mathbf{S} \cup \{Y\} = \{Y\}$

$f(y|\overline{do(x_1,x_2)}) = ?$

• $S = an(Y, \mathcal{G}_{V \setminus X}) \setminus \{Y\} = \{A, B, C, D\}$, Partition of $S \cup \{Y\} = (\{B, C, D\}, \{A\}, \{Y\})$.

$f(y|do(x_1, x_2)) = ?$

• $\mathbf{S} = an(Y, \mathcal{G}_{\mathbf{V} \setminus \mathbf{X}}) \setminus \{Y\} = \{A, B, C, D\}$, Partition of $\mathbf{S} \cup \{Y\} = (\{B, C, D\}, \{A\}, \{Y\})$.

$$\begin{aligned} f(y|do(x_1, x_2)) &= \int f(y, \mathbf{s}|do(x_1, x_2))d\mathbf{s} = \int f(y, \mathbf{a}, b, c, d|do(x_1, x_2))d\mathbf{s} \\ &= \int f(y|\mathbf{a}, b, c, d, do(x_1, x_2))f(\mathbf{a}|b, c, d, do(x_1, x_2))f(b, c, d|do(x_1, x_2))d\mathbf{s} \\ &= \int f(y|\mathbf{a}, b, c, d, do(x_1, x_2))f(\mathbf{a}|b, d, do(x_1, x_2))f(b, c, d|do(x_1, x_2))d\mathbf{s} \\ &= \int f(y|\mathbf{a}, b, c, d, x_2)f(\mathbf{a}|b, d, x_1)f(b, c, d)d\mathbf{s}. \end{aligned}$$

Estimation in the linear case

•
$$\tau_{y\mathbf{x}} = (\tau_{y\mathbf{x}_1,\mathbf{x}_2}, \tau_{y\mathbf{x}_2,\mathbf{x}_1})^T = (\alpha_1\gamma_1, \alpha_2)^T = (\frac{\partial E[Y|do(\mathbf{x}_1,\mathbf{x}_2)]}{\partial \mathbf{x}_1}, \frac{\partial E[Y|do(\mathbf{x}_1,\mathbf{x}_2)]}{\partial \mathbf{x}_2})^T$$

 $E[Y|do(\mathbf{x}_1,\mathbf{x}_2))] = \int yf(y|\mathbf{a}, b, c, d, \mathbf{x}_2)f(\mathbf{a}|b, d, \mathbf{x}_1)f(b, c, d)d\mathbf{s}$
 $= \int E[Y|\mathbf{a}, b, c, d, \mathbf{x}_2]f(\mathbf{a}|b, d, \mathbf{x}_1)f(b, c, d)d\mathbf{s}$
 $= \int (\alpha_1\mathbf{a} + \alpha_2\mathbf{x}_2 + \alpha_3b + \alpha_4\mathbf{c} + \alpha_5d)f(\mathbf{a}|b, d, \mathbf{x}_1)f(b, c, d)d\mathbf{s}$
 $= \alpha_1 \int E[A|b, d, \mathbf{x}_1]f(b, d)db dd + \alpha_2\mathbf{x}_2 + \int (\alpha_3b + \alpha_4\mathbf{c} + \alpha_5d)f(b, c, d)db dc dd$
 $= \alpha_1\gamma_1\mathbf{x}_1 + \alpha_2\mathbf{x}_2 + (\alpha_1\gamma_3 + \alpha_3)E[B] + \alpha_4E[C] + (\alpha_1\gamma_2 + \alpha_5)E[D].$

- Graphical necessary condition for identification of $f(\mathbf{y}|do(\mathbf{x}))$.
- Necessary and sufficient graphical criterion for identification of causal effects.
- Proposition on the "necessity" of adjustment.

Thanks!