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Goal

• Estimate the total causal effect of X on Y
- the change in Y due to do(x)-
from observational data.

• do(x): an intervention that sets variables X to x.
f (y|do(x)) 6= f (y|x).

Observational data Randomized
control studies
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Causal Directed Acyclic Graph (DAG) D.
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Interventional Causal DAG
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Causal DAG D after a “do”-intervention on X1.
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DAGs and distributions

Interventional density
• do(x): an intervention that sets variables X to x.
• Observational density f (v), Interventional density f (v|do(x)).

• A DAG D is causal if for all observational and interventional densities:
f (v) =

∏
Vj∈V

f (vj|pa(vj,D)) and f (v|do(x)) =
∏

Vj∈V\X
f (vj|pa(vj,D)).

X Y

B

f (b,x,y) = f (y|b,x)f (x|b)f (b)

X Y

B

f (b,y|do(x)) = f (y|b,x)f (b)

f (b,y|x) = f (y|b,x)f (b|x) 6= f (b,y|do(x))
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How to define a causal effect?

Total causal effect
• Total causal effect - τyx - is some functional of f (y|do(x)), P(Y|do(x)).
• Examples: E[Y|do(X = x+ 1)]− E[Y|do(X = x)], ∂

∂xE(Y|do(x)), OR, RR. . .

Identifiability
• A causal effect is identifiable from observational data if

f (y|do(x)) is computable from f (v).
• Given the causal DAG, every total causal effect is identifiable.

X Y

B f (y|do(x)) =
∫

f (b,y|do(x))db

=

∫
f (y|b,x)f (b)db.
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Problem solved?
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DAG D.
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Completed Partially Directed Acyclic Graph (CPDAG) C.
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Problem solved?
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Maximally oriented Partially Directed Acyclic Graph (MPDAG) G.
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Framework

Observational
data

(no latents)

Background
knowledge

Causal
graph:

DAG,
CPDAG,
MPDAG

Learn the
causal structure
with background

knowledge

PC, GES, PC LINGAM,
GIES, IGSP, AGES

Estimate total
causal effect

Identify total
causal effect

• PC (Spirtes et al, 1993), GES (Chickering, 2002)
• Adding background knowledge (Meek, 1995; TETRAD, Scheines et al., 1998), PC LINGAM

(Hoyer et al., 2008), GIES (Hauser and Bühlmann, 2012), IGSP (Wang et al., 2017), etc.
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Overview of graphical criteria for identification

Graphical criterion DAG CPDAG MPDAG

Generalized adjustment (Shpitser et al ’10, Perković et al ’15, ’17, ’18) ⇒ ⇒ ⇒
G-formula (Robins ’86) ⇔

⇒ - sufficient for identification,⇔ - necessary and sufficient for identification

Adjustment: Z is an adjustment set if

f (y|do(x)) =
∫

f (y|x, z)f (z)dz

G-formula: Let V′ = V \ {X ∪ Y}, then

f (y|do(x)) =
∫ ∏

Vi∈V\X
f (vi|pa(vi,D))dv′.
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Does an adjustment set always exist?

If X = {X}, Y = {Y}:

Proposition (Perković, 2020)
If Y /∈ Pa(X,G), then an adjustment set relative to (X,Y) exists in the MPDAG G, if and
only if the f (y|do(x)) is identifiable given G.

What about for |X| > 1, or |Y| > 1?
Does an adjustment set always exist?

No. Not even in a DAG.
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Joint Intervention
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Joint intervention
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Overview of graphical criteria for identification

Graphical criterion DAG CPDAG MPDAG

Generalized adjustment (Shpitser et al ’10, Perković et al ’15, ’17, ’18) ⇒ ⇒ ⇒
G-formula (Robins ’86) ⇔
Causal identification formula (Perković ’20) ⇔ ⇔ ⇔

⇒ - sufficient for identification,⇔ - necessary and sufficient for identification
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Causal identification formula

Theorem (Perković, 2020)
If all proper possibly causal paths from X to Y start with a directed edge in G, then

f (y|do(x)) =
∫ k∏

i=1
f (si|pa(si,G))ds,

where S = an(Y,GV\X) \ Y,
and (S1, . . . ,Sk) is a partition of S ∪ Y into undirected connected sets in G.

• S ∪ Y = an(Y,GV\X) - nodes that have a causal path to Y that is not through X.
• (S1, . . . ,Sk) - maximal connected components of S ∪ Y in the induced undirected
subgraph of G.
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How to use the causal identification formula?
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f (y|do(x1,x2)) =
∫
f (y|a,b, c,d,x2)f (a|b,d,x1)f (b, c,d)dadbdcdd
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f (y|do(x1,x2)) =?
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• S = an(Y,GV\X) \ {Y} = {A,B,C,D}, Partition of S ∪ {Y} =

f (y|do(x)) =
∫

f (y,s|do(x))ds =

∫
f (y,a,b, c,d|do(x1,x2))ds

=

∫
f (y|a,b, c,d,do(x1,x2))f (a|b, c,d,do(x1,x2))f (b, c,d|do(x1,x2))ds

=

∫
f (y|a,b, c,d,do(x1,x2))f (a|b,do(x1,x2))f (b, c,d|do(x1,x2))ds

=

∫
f (y|a,b, c,d,x2)f (a|b,x1)f (b, c,d)ds.
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• S = an(Y,GV\X) \ {Y} = {A,B,C,D}, Partition of S ∪ {Y} = ({B,C,D}, {A}, {Y}).

f (y|do(x)) =
∫
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∫
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Estimation in the linear case

X2
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β

• τyx = (τyx1.x2 , τyx2.x1)
T = (α1γ1, α2)

T = (∂E[Y|do(x1,x2)]∂x1 , ∂E[Y|do(x1,x2)]∂x2 )T

E[Y|do(x1,x2))] =
∫

yf (y|a,b, c,d,x2)f (a|b,d,x1)f (b, c,d)ds

=

∫
E[Y|a,b, c,d,x2]f (a|b,d,x1)f (b, c,d)ds

=

∫
(α1a+ α2x2 + α3b+ α4c+ α5d)f (a|b,d,x1)f (b, c,d)ds

= α1

∫
E[A|b,d,x1]f (b,d)dbdd+ α2x2 +

∫
(α3b+ α4c+ α5d)f (b, c,d)dbdcdd

= α1γ1x1 + α2x2 + (α1γ3 + α3)E[B] + α4E[C] + (α1γ2 + α5)E[D].
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Summary

Observational
data

+bg. know.

Causal
graph

Learn the
causal structure

Estimate total
causal effect

Identify total
causal effect

Perković (2020)

• Graphical necessary condition for identification of f (y|do(x)).
• Necessary and sufficient graphical criterion for identification of causal effects.
• Proposition on the “necessity” of adjustment.

Thanks!
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