Causal effects in MPDAGs: identification and efficient estimation

Emilija Perković and F. Richard Guo

Department of Statistics, University of Washington

Estimate the total causal effect of A on Y

Observational data

Randomized control studies

- Estimate the total causal effect of A on Y

 the change in Y due to do(a) from observational data.
- *do*(*a*): an intervention that sets variables *A* to *a*.

Observational data

Randomized control studies

- Estimate the total causal effect of A on Y

 the change in Y due to do(a) from observational data.
- do(a): an intervention that sets variables A to a. $f(y|do(a)) \neq f(y|a)$.

Observational data

Randomized control studies

Observational Causal DAG

Causal Directed Acyclic Graph (DAG) \mathcal{D} .

Interventional Causal DAG

Causal DAG ${\mathcal D}$ after a "do"-intervention on A.

DAGs and distributions

Interventional density

- *do*(*a*): an intervention that sets variables *A* to *a*.
- Observational density f(v), Interventional density f(v|do(a)).

DAGs and distributions

Interventional density

- *do*(*a*): an intervention that sets variables *A* to *a*.
- Observational density f(v), Interventional density f(v|do(a)).
- A DAG D is causal if for all observational and interventional densities:

 $f(v) = \prod_{V_j \in V} f(v_j | pa(v_j, D)) \text{ and } f(v|do(a)) = \prod_{V_j \in V \setminus A} f(v_j | pa(v_j, D)).$ $B \xrightarrow{V} A \xrightarrow{V} Y$ $A \xrightarrow{V} Y$ f(b, a, y) = f(y|b, a)f(a|b)f(b) f(b, y|do(a)) = f(y|b, a)f(b)

 $f(b, y|a) = f(y|b, a)f(b|a) \neq f(b, y|do(a))$

How to define a causal effect?

Total causal effect

- Total causal effect τ_{ay} is some functional of f(y|do(a)), P(Y|do(a)).
- Examples: $E[Y|do(A = a + 1)] E[Y|do(A = a)], \frac{\partial}{\partial a}E(Y|do(a)), OR, RR...$

Identifiability

A causal effect is identifiable from observational data if

f(y|do(a)) is computable from f(v).

How to define a causal effect?

Total causal effect

- Total causal effect τ_{ay} is some functional of f(y|do(a)), P(Y|do(a)).
- Examples: E[Y|do(A = a + 1)] E[Y|do(A = a)], $\frac{\partial}{\partial a}E(Y|do(a))$, OR, RR...

Identifiability

A causal effect is identifiable from observational data if

f(y|do(a)) is computable from f(v).

• Given the causal DAG, every total causal effect is identifiable.

$$f(y|do(a)) = \int f(b, y|do(a))db$$
$$= \int f(y|b, a)f(b)db.$$

G-formula

DAG \mathcal{D} .

Partially Directed Acyclic Graph (PDAG).

Maximally oriented Partially Directed Acyclic Graph (MPDAG) G.

- PC (Spirtes et al, 1993), GES (Chickering, 2002)
- Adding background knowledge (Meek, 1995; TETRAD, Scheines et al., 1998), PC LINGAM (Hoyer et al., 2008), GIES (Hauser and Bühlmann, 2012), IGSP (Wang et al., 2017), etc.

Theorem (Perković, 2020)

The total causal effect of A on Y is identifiable in MPDAG \mathcal{G} if and only if **all proper possibly causal paths** from A to Y start with a directed edge in \mathcal{G} .

The total causal effect of A on Y is identifiable in MPDAG \mathcal{G} if and only if **all proper possibly causal paths** from A to Y start with a directed edge in \mathcal{G} .

- Naive: enumerate all the DAGs in [G], and identify for each DAG.
 - Computationally prohibitive for large |V| (the complete graph contains |V|! DAGs); see also GIIIispie et al (2002), Steinsky et al (2013).

The total causal effect of A on Y is identifiable in MPDAG \mathcal{G} if and only if **all proper possibly causal paths** from A to Y start with a directed edge in \mathcal{G} .

- Naive: enumerate all the DAGs in [G], and identify for each DAG.
 - Computationally prohibitive for large |V| (the complete graph contains |V|! DAGs); see also GIllispie et al (2002), Steinsky et al (2013).
- Enumerate the valid parent sets of A:
 - |A| = 1: IDA algorithm (Maathuis et al 2009).
 - |A| > 1: joint-IDA algorithm (Nandy et al 2017).

The total causal effect of A on Y is identifiable in MPDAG \mathcal{G} if and only if **all proper possibly causal paths** from A to Y start with a directed edge in \mathcal{G} .

- Naive: enumerate all the DAGs in [G], and identify for each DAG.
 - Computationally prohibitive for large |V| (the complete graph contains |V|! DAGs); see also GIllispie et al (2002), Steinsky et al (2013).
- Enumerate the valid parent sets of A:
 - |A| = 1: IDA algorithm (Maathuis et al 2009).
 - |A|> 1: joint-IDA algorithm (Nandy et al 2017).
 - Yet, the total effect and f(y|do(a)) can be the same for two different parent sets!

The total causal effect of A on Y is identifiable in MPDAG \mathcal{G} if and only if **all proper possibly causal paths** from A to Y start with a directed edge in \mathcal{G} .

For an MPDAG \mathcal{G} , we look for sub-MPDAGs $\mathcal{G}_1, \ldots, \mathcal{G}_m$ such that

The total causal effect of A on Y is identifiable in MPDAG \mathcal{G} if and only if **all proper possibly causal paths** from A to Y start with a directed edge in \mathcal{G} .

For an MPDAG \mathcal{G} , we look for sub-MPDAGs $\mathcal{G}_1, \ldots, \mathcal{G}_m$ such that

- 1. complete: $[\mathcal{G}] = [\mathcal{G}_1] \dot{\cup} [\mathcal{G}_2] \dot{\cup} \cdots \dot{\cup} [\mathcal{G}_m]$
- 2. f(y|do(a)) is identifiable under each G_i
- 3. **minimal**: maps $f \mapsto f(y|do(a))$ are distinct under each \mathcal{G}_i (identification formulae are distinct)

 \Rightarrow possible causal effects $f \mapsto \frac{\partial}{\partial a} \mathbb{E}(Y|do(A) = a)$ are distinct functionals!

The total causal effect of A on Y is identifiable in MPDAG \mathcal{G} if and only if **all proper possibly causal paths** from A to Y start with a directed edge in \mathcal{G} .

For an MPDAG \mathcal{G} , we look for sub-MPDAGs $\mathcal{G}_1, \ldots, \mathcal{G}_m$ such that

- 1. complete: $[\mathcal{G}] = [\mathcal{G}_1] \dot{\cup} [\mathcal{G}_2] \dot{\cup} \cdots \dot{\cup} [\mathcal{G}_m]$
- 2. f(y|do(a)) is identifiable under each G_i
- 3. **minimal**: maps $f \mapsto f(y|do(a))$ are distinct under each \mathcal{G}_i (identification formulae are distinct)

 \Rightarrow possible causal effects $f \mapsto \frac{\partial}{\partial a} \mathbb{E}(Y|do(A) = a)$ are distinct functionals!

A natural algorithm is to recursively orient the undirected edges attached to A on **proper possibly causal paths** to Y.

The total causal effect of A on Y is identifiable in MPDAG \mathcal{G} if and only if **all proper possibly causal paths** from A to Y start with a directed edge in \mathcal{G} .

Input: MPDAG \mathcal{G} , $Y \in V$ and $A \subset V \setminus \{Y\}$.

Algorithm FirstTry

The total causal effect of A on Y is identifiable in MPDAG \mathcal{G} if and only if **all proper possibly causal paths** from A to Y start with a directed edge in \mathcal{G} .

```
Input: MPDAG \mathcal{G}, Y \in V and A \subset V \setminus \{Y\}.
```

Algorithm FirstTry

1. Pick $A_1 - V_1$ such that $A_1 \in A$ and there is a proper possibly causal path A, V_1, \ldots, Y .

The total causal effect of A on Y is identifiable in MPDAG \mathcal{G} if and only if **all proper possibly causal paths** from A to Y start with a directed edge in \mathcal{G} .

```
Input: MPDAG \mathcal{G}, Y \in V and A \subset V \setminus \{Y\}.
```

Algorithm FirstTry

- 1. Pick $A_1 V_1$ such that $A_1 \in A$ and there is a proper possibly causal path A, V_1, \ldots, Y .
- 2. $\mathcal{G}_1 \leftarrow \mathsf{MPDAG}(\mathcal{G}, \mathcal{A}_1 \rightarrow \mathcal{V}_1), \mathcal{G}_2 \leftarrow \mathsf{MPDAG}(\mathcal{G}, \mathcal{A}_1 \leftarrow \mathcal{V}_1)$

The total causal effect of A on Y is identifiable in MPDAG \mathcal{G} if and only if **all proper possibly causal paths** from A to Y start with a directed edge in \mathcal{G} .

```
Input: MPDAG \mathcal{G}, Y \in V and A \subset V \setminus \{Y\}.
```

Algorithm FirstTry

- 1. Pick $A_1 V_1$ such that $A_1 \in A$ and there is a proper possibly causal path A, V_1, \ldots, Y .
- 2. $\mathcal{G}_1 \leftarrow \mathsf{MPDAG}(\mathcal{G}, \mathcal{A}_1 \rightarrow \mathcal{V}_1), \mathcal{G}_2 \leftarrow \mathsf{MPDAG}(\mathcal{G}, \mathcal{A}_1 \leftarrow \mathcal{V}_1)$

3. Recurse on \mathcal{G}_1 and \mathcal{G}_2 until f(y|do(a)) is identified MPDAG(\mathcal{G}, R) adds orientations R to \mathcal{G} and completes Meek orientation rules.

Optimal enumeration

Orienting A – B first ...

Orienting A – B first ...

Orienting A – B first ...

Orienting A – B first ...

Orienting A – C first ...

• A - C should be oriented first because the *status* of A - B - C - Y depends on A - C - Y.

Algorithm IDGraphs, (Guo & Perković, 2020)

- 1. Pick $A_1 V_1$ such that $A_1 \in A$ and A_1, V_1, \ldots, Y is a shortest proper possibly causal path from A to Y.
- 2. $\mathcal{G}_1 \leftarrow \mathsf{MPDAG}(\mathcal{G}, \mathcal{A}_1 \rightarrow \mathcal{V}_1)$, $\mathcal{G}_2 \leftarrow \mathsf{MPDAG}(\mathcal{G}, \mathcal{A}_1 \leftarrow \mathcal{V}_1)$
- 3. Recurse on \mathcal{G}_1 and \mathcal{G}_2 until identified

Algorithm IDGraphs, (Guo & Perković, 2020)

- 1. Pick $A_1 V_1$ such that $A_1 \in A$ and A_1, V_1, \ldots, Y is a shortest proper possibly causal path from A to Y.
- $\textbf{2.} \hspace{0.1in} \mathcal{G}_1 \leftarrow \mathsf{MPDAG}(\mathcal{G}, A_1 \rightarrow V_1) \text{, } \mathcal{G}_2 \leftarrow \mathsf{MPDAG}(\mathcal{G}, A_1 \leftarrow V_1) \\$
- 3. Recurse on \mathcal{G}_1 and \mathcal{G}_2 until identified

Theorem (Guo & Perković, 2020)

 $(\mathcal{G}_1, \ldots, \mathcal{G}_m)$ output by the algorithm is **complete** and **minimal**.

Algorithm IDGraphs, (Guo & Perković, 2020)

- 1. Pick $A_1 V_1$ such that $A_1 \in A$ and A_1, V_1, \ldots, Y is a shortest proper possibly causal path from A to Y.
- 2. $\mathcal{G}_1 \leftarrow \mathsf{MPDAG}(\mathcal{G}, \mathcal{A}_1 \rightarrow \mathcal{V}_1)$, $\mathcal{G}_2 \leftarrow \mathsf{MPDAG}(\mathcal{G}, \mathcal{A}_1 \leftarrow \mathcal{V}_1)$
- 3. Recurse on \mathcal{G}_1 and \mathcal{G}_2 until identified

Theorem (Guo & Perković, 2020)

 $(\mathcal{G}_1, \ldots, \mathcal{G}_m)$ output by the algorithm is **complete** and **minimal**.

Hence, each G_i represents the minimal set of additional orientations required for a particular interventional distribution/possible effect!

Algorithm IDGraphs, (Guo & Perković, 2020)

- 1. Pick $A_1 V_1$ such that $A_1 \in A$ and A_1, V_1, \ldots, Y is a shortest proper possibly causal path from A to Y.
- $\textbf{2.} \hspace{0.1in} \mathcal{G}_1 \leftarrow \mathsf{MPDAG}(\mathcal{G}, A_1 \rightarrow V_1) \text{, } \mathcal{G}_2 \leftarrow \mathsf{MPDAG}(\mathcal{G}, A_1 \leftarrow V_1) \\$
- 3. Recurse on \mathcal{G}_1 and \mathcal{G}_2 until identified

Theorem (Guo & Perković, 2020)

 $(\mathcal{G}_1, \ldots, \mathcal{G}_m)$ output by the algorithm is **complete** and **minimal**.

Hence, each G_i represents the minimal set of additional orientations required for a particular interventional distribution/possible effect!

In contrast, the IDA algorithm will output 4 effects for this example, but two of them are different estimates of the same possible effect!

In the following, we further assume linearity in the data generating mechanism.

• Suppose \mathcal{D} is the underlying causal DAG.

- Suppose \mathcal{D} is the underlying causal DAG.
 - \mathcal{D} is unknown.

- Suppose \mathcal{D} is the underlying causal DAG.
 - \mathcal{D} is unknown.
- Suppose data is generated by a linear structural equation model (SEM)

$$X_{v} = \sum_{u:u o v} \gamma_{uv} X_{u} + \epsilon_{u}, \quad \mathbb{E} \, \epsilon_{u} = 0, \quad 0 < \operatorname{var} \epsilon_{u} < \infty.$$

- Suppose D is the underlying causal DAG.
 - \mathcal{D} is unknown.
- Suppose data is generated by a linear structural equation model (SEM)

$$X_V = \sum_{u: u o V} \gamma_{uv} X_u + \epsilon_u, \quad \mathbb{E} \, \epsilon_u = 0, \quad 0 < \operatorname{var} \epsilon_u < \infty.$$

Under no unobserved confounder, the errors are mutually independent.

Suppose we want to estimate the **total (causal) effect of** A **on** Y.

Total effect

Suppose we want to estimate the **total (causal) effect of** A **on** Y.

Total effect

Suppose we want to estimate the **total (causal) effect of** A **on** Y.

The total effect τ_{AY} is defined as the slope of $x_a \mapsto \mathbb{E}[X_Y | do(X_A = x_a)]$, given by a sum-product of Wright (1934):

$$\tau_{AY} = \frac{\mathrm{d}}{\mathrm{d}x_a} \mathbb{E}[X_Y | \mathrm{do}(X_A = x_a)] = (\gamma_{AZ} \gamma_{ZW} + \gamma_{AW}) \gamma_{WY}.$$

Our task is to estimate τ_{AY} from *n* iid observational sample generated by a linear SEM associated with causal DAG D, given that

 $\mathcal{D} \in [\mathcal{G}]$ for MPDAG \mathcal{G} , τ_{AY} is identifiable from \mathcal{G} .

Our task is to estimate τ_{AY} from *n* iid observational sample generated by a linear SEM associated with causal DAG D, given that

 $\mathcal{D} \in [\mathcal{G}]$ for MPDAG \mathcal{G} , τ_{AY} is identifiable from \mathcal{G} .

Buckets

$$B_1 = \{S\}, B_2 = \{A\}, B_3 = \{Z, W, T\}, B_4 = \{Y\}.$$

$$B_1 = \{S\}, B_2 = \{A\}, B_3 = \{Z, W, T\}, B_4 = \{Y\}.$$

1. The "between bucket" causal effects are **identifiable**.

$$B_1 = \{S\}, B_2 = \{A\}, B_3 = \{Z, W, T\}, B_4 = \{Y\}.$$

1. The "between bucket" causal effects are **identifiable**.

$$B_1 = \{S\}, B_2 = \{A\}, B_3 = \{Z, W, T\}, B_4 = \{Y\}.$$

- 1. The "between bucket" causal effects are **identifiable**.
- Restrictive property: Each node in a bucket has the same out-of-bucket parents (Guo and Perković, 2020b).

$$B_1 = \{S\}, B_2 = \{A\}, B_3 = \{Z, W, T\}, B_4 = \{Y\}.$$

- 1. The "between bucket" causal effects are **identifiable**.
- Restrictive property: Each node in a bucket has the same out-of-bucket parents (Guo and Perković, 2020b).
- We use this to reparametrize the SEM.

Proposition (Block-recursive form, Guo and Perković, 2020)

Let B_1, \ldots, B_K be the ordered bucket decomposition of V in MPDAG \mathcal{G} . Then

$$\begin{split} & X = \Lambda^{\mathsf{T}} X + \varepsilon, \qquad \Lambda = (\lambda_{ij}), j \in \mathcal{B}_k, \ i \notin \mathrm{pa}(\mathcal{B}_k, \mathcal{G}) \quad \Rightarrow \quad \lambda_{ij} = 0, \\ & \mathbb{E} \, \varepsilon = 0, \quad \mathbb{E} \, \varepsilon_{\mathcal{B}_k} \varepsilon_{\mathcal{B}_k}^{\mathsf{T}} \succ \mathbf{0}, \quad \varepsilon_{\mathcal{B}_k} \text{ mutually independent}, \end{split}$$

Proposition (Block-recursive form, Guo and Perković, 2020)

Let B_1, \ldots, B_K be the ordered bucket decomposition of V in MPDAG \mathcal{G} . Then

$$\begin{split} & X = \Lambda^{\mathsf{T}} X + \varepsilon, \qquad \Lambda = (\lambda_{ij}), j \in B_k, \ i \notin \mathsf{pa}(B_k, \mathcal{G}) \quad \Rightarrow \quad \lambda_{ij} = 0, \\ & \mathbb{E} \varepsilon = 0, \quad \mathbb{E} \varepsilon_{B_k} \varepsilon_{B_k}^{\mathsf{T}} \succ \mathbf{0}, \quad \varepsilon_{B_k} \text{ mutually independent,} \end{split}$$

Two nice things happen under this reparametrization:

Proposition (Block-recursive form, Guo and Perković, 2020)

Let B_1, \ldots, B_K be the ordered bucket decomposition of V in MPDAG \mathcal{G} . Then

$$\begin{split} X &= \Lambda^{\mathsf{T}} X + \varepsilon, \qquad \Lambda = (\lambda_{ij}), j \in B_k, \ i \notin \mathsf{pa}(B_k, \mathcal{G}) \implies \lambda_{ij} = 0, \\ \mathbb{E} \varepsilon &= 0, \qquad \mathbb{E} \varepsilon_{\mathcal{B}}, \varepsilon_{\mathcal{T}}^{\mathsf{T}} \succ \mathbf{0}, \quad \varepsilon_{\mathcal{B}}, \text{ mutually independent.} \end{split}$$

Two nice things happen under this reparametrization:

• For $S = An(Y, \mathcal{G}_{V \setminus A})$, τ_{AY} can be identified as

$$\tau_{AY} = \Lambda_{A,S} \left[(I - \Lambda_{S,S})^{-1} \right]_{S,Y}.$$

The bucket-wise error distribution is nuisance.

Proposition (Block-recursive form, Guo and Perković, 2020)

Let B_1, \ldots, B_K be the ordered bucket decomposition of V in MPDAG \mathcal{G} . Then

$$\begin{split} &X = \Lambda^{\mathsf{T}} X + \varepsilon, \qquad \Lambda = (\lambda_{ij}), j \in B_k, \ i \notin \mathrm{pa}(B_k, \mathcal{G}) \quad \Rightarrow \quad \lambda_{ij} = 0, \\ &\mathbb{E} \, \varepsilon = 0, \quad \mathbb{E} \, \varepsilon_{B_k} \varepsilon_{B_k}^{\mathsf{T}} \succ \mathbf{0}, \quad \varepsilon_{B_k} \text{ mutually independent,} \end{split}$$

Two nice things happen under this reparametrization:

• For $S = An(Y, \mathcal{G}_{V \setminus A})$, τ_{AY} can be identified as

$$\tau_{AY} = \Lambda_{A,S} \left[(I - \Lambda_{S,S})^{-1} \right]_{S,Y}.$$

The bucket-wise error distribution is nuisance.

Under Gaussian errors, the MLE for each Λ_{pa(B_i,G),B_i} is just the least squares coefficients of B_i ~ pa(B_i,G).

Proposition (Block-recursive form, Guo and Perković, 2020)

Let B_1, \ldots, B_K be the ordered bucket decomposition of V in MPDAG \mathcal{G} . Then

$$\begin{split} &X = \Lambda^{\mathsf{T}} X + \varepsilon, \qquad \Lambda = (\lambda_{ij}), j \in B_k, \ i \notin \mathrm{pa}(B_k, \mathcal{G}) \quad \Rightarrow \quad \lambda_{ij} = 0, \\ &\mathbb{E} \, \varepsilon = 0, \quad \mathbb{E} \, \varepsilon_{B_k} \varepsilon_{B_k}^{\mathsf{T}} \succ \mathbf{0}, \quad \varepsilon_{B_k} \text{ mutually independent,} \end{split}$$

Two nice things happen under this reparametrization:

• For $S = An(Y, \mathcal{G}_{V \setminus A})$, τ_{AY} can be identified as

$$\tau_{AY} = \Lambda_{A,S} \left[(I - \Lambda_{S,S})^{-1} \right]_{S,Y}.$$

The bucket-wise error distribution is nuisance.

- Under Gaussian errors, the MLE for each Λ_{pa(B_i,G),B_i} is just the least squares coefficients of B_i ~ pa(B_i,G).
 - This is a special case of "seemingly unrelated regression" under the restrictive property.

Efficient estimator

If τ_{AY} is identifiable given MPDAG G, the *G*-regression estimator is defined as:

$$\hat{\tau}_{AY}^{\mathcal{G}} := \hat{\Lambda}_{A,S}^{\mathcal{G}} \left[(I - \hat{\Lambda}_{S,S}^{\mathcal{G}})^{-1} \right]_{S,Y},$$

where $S = An(Y, \mathcal{G}_{V \setminus A})$, and $\hat{\Lambda}^{\mathcal{G}}$ is matrix consisting of least squares coefficients for each "bucket" regression.
If τ_{AY} is identifiable given MPDAG G, the *G*-regression estimator is defined as:

$$\hat{\tau}_{AY}^{\mathcal{G}} := \hat{\Lambda}_{A,S}^{\mathcal{G}} \left[(I - \hat{\Lambda}_{S,S}^{\mathcal{G}})^{-1} \right]_{S,Y},$$

where $S = An(Y, \mathcal{G}_{V \setminus A})$, and $\hat{\Lambda}^{\mathcal{G}}$ is matrix consisting of least squares coefficients for each "bucket" regression.

Theorem (*G*-regression, Guo and Perković, 2020)

Then for any regular estimator $\hat{\tau}_{AY}$ that only uses the **first two moments** of the data, it holds that

 $\operatorname{avar}\left(\hat{\tau}_{\mathcal{A}\mathcal{Y}}\right) \geq \operatorname{avar}\left(\hat{\tau}_{\mathcal{A}\mathcal{Y}}^{\mathcal{G}}\right).$

If τ_{AY} is identifiable given MPDAG G, the *G*-regression estimator is defined as:

$$\hat{\tau}_{AY}^{\mathcal{G}} := \hat{\Lambda}_{A,S}^{\mathcal{G}} \left[(I - \hat{\Lambda}_{S,S}^{\mathcal{G}})^{-1} \right]_{S,Y},$$

where $S = An(Y, \mathcal{G}_{V \setminus A})$, and $\hat{\Lambda}^{\mathcal{G}}$ is matrix consisting of least squares coefficients for each "bucket" regression.

Theorem (*G*-regression, Guo and Perković, 2020)

Then for any regular estimator $\hat{\tau}_{AY}$ that only uses the **first two moments** of the data, it holds that

$$\operatorname{avar}\left(\hat{\tau}_{\mathcal{A}\mathcal{Y}}\right) \geq \operatorname{avar}\left(\hat{\tau}_{\mathcal{A}\mathcal{Y}}^{\mathcal{G}}\right).$$

This includes estimators in the literature:

- covariate adjustment (Henckel et al., 2019, Witte et al., 2020),
- recursive regressions (Nandy et al., 2017, Gupta et al., 2020),
- modified Cholesky decomposition (Nandy et al., 2017).

The efficiency is achieved by exploiting the conditional independences encoded in \mathcal{G} .

The efficiency is achieved by exploiting the conditional independences encoded in \mathcal{G} .

\mathcal{G} -regression estimator

$$\hat{\tau}_{AY}^{\mathcal{G}} = \hat{\lambda}_{AW} \hat{\lambda}_{WY},$$

where $\hat{\lambda}_{AW}$, $\hat{\lambda}_{WY}$ are taken from $W \sim A$ and $Y \sim W + S$ respectively.

The efficiency is achieved by exploiting the conditional independences encoded in \mathcal{G} .

\mathcal{G} -regression estimator

$$\hat{\tau}_{AY}^{\mathcal{G}} = \hat{\lambda}_{AW} \hat{\lambda}_{WY},$$

where $\hat{\lambda}_{AW}$, $\hat{\lambda}_{WY}$ are taken from $W \sim A$ and $Y \sim W + S$ respectively.

adjustment estimator

$$\hat{\tau}_{AY}^{adj} = \hat{\beta}_{AY}$$
 from $Y \sim A + S$.

n = 100, t_5 errors.

Table: Geometric average of squared errors relative to \mathcal{G} -regression: adj.0: optimal adjustment IDA.M: IDA (Cholesky)

IDA.R: IDA (recursive regression)

	<i>V</i> = 20		<i>V</i> = 50		<i>V</i> = 100	
A	<i>n</i> = 100	n = 1000	<i>n</i> = 100	n = 1000	n = 100	<i>n</i> = 1000
adj.O						
1	1.3	1.3	1.4	1.3	1.5	1.5
2	3.4	4.2	4.7	4.9	4.2	4.5
3	6.3	5.9	7.4	7.2	7.8	8.0
4	9.3	9.3	12	14	12	12
IDA.M						
1	20	19	61	48	103	108
2	62	65	220	182	293	356
3	93	119	354	396	749	771
4	154	222	533	895	1188	1604
IDA.R						
1	20	19	61	48	103	108
2	33	38	121	113	176	199
3	30	39	171	135	342	312
4	48	50	187	214	405	432

Simulation: size of possible effects

Final remarks

Guo & Perković (2020b)

- **R package** eff²: github.com/richardkwo/eff2
- Efficient estimation beyond linear SEMs? We are working on it!

Thanks!