
STAT 512: Statistical Inference Original notes credit: Yen-Chi Chen

Lecture 1: Introduction to Probability and Statistics
Instructor: Emilija Perković

These notes are partially based on Perlman (2019).

Useful additional reading: Chapters 1 and 4 of Casella and Berger (2021). Please work through the examples
and results in Chapter 1 of Casella and Berger (2021).

Useful recall: Basic set theory, circle and ellipse functional representations, polar coordinates, computing
the area of a sector of a circle, change of variables (see also Lecture notes 8).

1.1 Sample Space and Probability Measure

The sample space Ω is the collection of all possible outcomes of a random experiment, e.g. toss of a coin,
Ω = {H,T}. Elements ω ∈ Ω are called outcomes, realizations or elements. Subsets A ⊆ Ω are called events.
You should able to express events of interest using the standard set operations. For instance:

• “Not A” corresponds to the complement Ac = Ω \A;

• “A or B” corresponds to the union A ∪B;

• “A and B” corresponds to the intersection A ∩B.

We said that A1, A2, ... are pairwise disjoint/mutually exclusive if Ai ∩ Aj = ∅ for all i ̸= j. A partition of
Ω is a sequence of pairwise disjoint sets A1, A2, ... such that ∪∞

i=1Ai = Ω. We use |A| to denote the number
of elements in A.

The sample space defines basic elements and operations of events. But it is still too simple to be useful in
describing our senses of ‘probability’. Now we introduce the concept of σ-algebra.

Definition 1.1 A σ-algebra F is a collection of subsets of Ω satisfying:

(A1) (full and null set) Ω ∈ F , ∅ ∈ F (∅ = empty set).

(A2) (complement)A ∈ F ⇒ Ac ∈ F .

(A3) (countable union) A1, A2, ... ∈ F ⇒
⋃∞

i=1 Ai ∈ F .

The σ-algebra defines a collection of events. The sets in F are said to be measurable and (Ω,F) is a
measurable space. The intuition of a set being measurable is that we can find a function that takes the
elements of F and output a real number; this number represents the ‘size’ of the input element.

Borel σ-algebra. Generally, we will not choose F to be just any σ-algebra. For Ω ≡ R, we will consider
the smallest σ-algebra that contains all intervals of the form (−∞, a], for a ∈ R (smallest in terms of the
union operation). This algebra is known as the Borel σ-algebra.
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We use O to denote the collection of all open set on R, that is all sets that can be formed by countable
union, intersection and complement of open sets of the form (a, b), a, b ∈ R. The Borel σ- algebra, denoted
by B is a σ-algebra generated by open sets O. We also write B = σ(O). By definition of a σ-algebra, a Borel
σ-algebra is a collection of all open or closed sets on R ∪ {−∞,+∞} and all of their intersections, unions,
and complements. Additionally, we will call an object a Borel set if it can be formed by countable union,
intersection and complement of open sets of the form (a, b), a, b ∈ R.

Now we introduce the concept of probability. Intuitively, probability should be associated with an event –
when we say a probability of something, this ‘something’ is an event. Using the fact that the σ-algebra F is
a collection of events and the property that F is measurable, we then introduce a measure called probability
measure P(·) that assigns a number between 0 and 1 to every element of F . Namely, this function P maps
an event to a number, describing the likelihood of the event.

Definition 1.2 Let Ω be a sample space and F a σ-algebra. A probability measure is a mapping P : F 7→ R
satisfying the following three axioms

(P1) P(Ω) = 1.

(P2) P(A) ≥ 0 for all A ∈ F .

(P3) (countably additive) P (
⋃∞

i=1 Ai) =
∑∞

i=1 P(Ai) for mutually exclusive events A1, A2, ... ∈ F .

The triplet (Ω,F ,P) is called a probability space.

Theorem 1.3 The three axioms (P1)-(P3) imply the following properties (among others):

(1) P(∅) = 0,

(2) 0 ≤ P(A) ≤ 1,

(3) A ⊂ B =⇒ P(A) ≤ P(B),

(4) P(Ac) = 1− P(A),

(5) P(A ∪B) = P(A) + P(B)− P(A ∩B).

The countable additive property (P3) also implies that if a sequence of sets A1, A2, . . . in F satisfying
An ⊆ An+1 for all n, then

P

( ∞⋃
n=1

An

)
= lim

n→∞
P(An).

If An ⊇ An+1 for all n, then

P

( ∞⋂
n=1

An

)
= lim

n→∞
P(An).

How do we interpret the concept probability? There are two major views in statistics. The first view is called
the frequentist view – where a probability is interpreted as the limiting frequency observed over repetitions in
identical situations. The other view is called the Bayesian view or the subjective view where the probability
quantifies personal belief.
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1.2 Random Variables

So far, we have built a mathematical model describing the probability and events. However, in reality, we
are dealing with numbers, which may not be directly link to events. We need another mathematical notion
that bridges the events and numbers and this is why we need to introduce random variables.

Informally, a random variable is a mapping X : Ω 7→ R that assigns a real number X(ω) to each outcome
ω ∈ Ω. For example, we toss a coin 2 times and let X represents the number of heads. The sample
space is Ω = {HH,HT, TH, TT}. Then for each ω ∈ Ω, X(ω) outputs a real number: X({HH}) = 2,
X({HT}) = X({TH}) = 1, and X({TT}) = 0.

Definition 1.4 Let Ω be a sample space and F a σ-algebra. A mapping X : Ω → R is a random variable
(R.V.) if X(ω) is measurable with respect to F , i.e.,

X−1((−∞, c]) := {ω ∈ Ω : X(ω) ≤ c} ∈ F , for all c ∈ R.

Note that the condition in Definition 1.4 is equivalent to saying that X−1(B) ∈ F for every Borel set B.
This means that the set X−1(B) is indeed an event so that it makes sense to talk about P(X ∈ B), the
probability that X lies in B, for any Borel set B. The function B 7→ P(X ∈ B) is a probability measure and
is called the (probability) distribution of X.

A very important characteristic of a random variable is its cumulative distribution function (CDF), which is
defined as follows

Definition 1.5 The cumulative distribution function (CDF) of a random variable X, denoted by, FX(x) or
F (x), is defined by

F (x) = P (X ≤ x) = P({ω ∈ Ω : X(ω) ≤ x}).

The inverse of the CDF F−1(x) is called the quantile function. The distribution ofX is completely determined
by the CDF F (x), regardless of X being a discrete random variable or a continuous random variable (or a
mix of them).

Theorem 1.6 The function F (x) is a CDF if and only if the following three conditions hold:

(1) limx→−∞ F (x) = 0, and limx→+∞ F (x) = 1.

(2) F (x) is a nondecreasing function of x.

(3) F (x) is right-continuous; that is, for every number x0, limx→x0+ F (x) = F (x0).

When X takes discrete values, we may characterize its distribution using the probability mass function
(PMF):

p(x) = P (X = x) = F (x)− F (x−),

where F (x−) = limϵ→0 F (x−ϵ). In this case, one can recover the CDF from PMF using F (x) =
∑

x′≤x p(x
′).

If X is an absolutely continuous random variable, we may describe its distribution using the probability
density function (PDF):

p(x) = F ′(x) =
d

dx
F (x).
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In this case, the CDF can be written as

F (x) = P (X ≤ x) =

∫ x

−∞
p(x′)dx′.

However, the PMF and PDF are not always well-defined. There are situations where X does not have a PMF
or a PDF. The formal definition of PMF and PDF requires the notion of the Radon-Nikodym derivative,
which is beyond the scope of this course.

Example 1 (discrete). Suppose X takes only three possible values: 1, 2, 3, with equal probabilities. Then
the PMF p(x) = 1

3 for x = 1, 2, 3 and p(x) = 0 otherwise. The CDF will be

F (x) =


0, x < 1
1
3 , 1 ≤ x < 2
2
3 , 2 ≤ x < 3

1, x ≥ 3

(1.1)

Example 2 (continuous). Consider a random variable X that has a uniform PDF over the interval [1, 10].
Namely, there is a constant c such that p(x) = c for x ∈ [1, 10] and p(x) = 0 otherwise. What will c be?
Using the fact that 1 =

∫
p(x)dx, you can easily see that c = 1

9 . What will the CDF be in this case? By
definition,

F (x) =

∫ x

−∞
p(u)du =


0, x ≤ 1
x−1
9 , 1 < x ≤ 10

1, x > 10.

Example 3 (no PDF or PMF). Consider a random variable X such that with a probability of 0.5, it
always takes a fixed value 2 and with a probability of 0.5, it is from a uniform PDF over [0, 1]. In this
case, can we define PDF or PMF? It turns out that this random variable X does not have a PDF (since
it has a point mass at x = 2) but it has a strange PMF (that takes a value of 0 except at x = 2). So
we cannot characterize its distribution well using the PDF or PMF. However, using the definition of CDF
F (x) = P (X ≤ x), you can easily see that it has a well-defined CDF:

F (x) = P (X ≤ x) =


0, x ≤ 0
x
2 , 0 < x ≤ 1
1
2 , 1 < x < 2

1, x ≥ 2.

If you take a more advanced probability theory course, you will find that the CDF is the formal definition
of a distribution function–it is always well-defined unlike the PMF or PDF.

1.3 Common Distributions

1.3.1 Discrete Random Variables

Bernoulli. If X is a Bernoulli random variable with parameter p, then X = 0 or, 1 such that

P (X = 1) = p, P (X = 0) = 1− p.
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In this case, we write X ∼ Ber(p).

Binomial. If X is a binomial random variable with parameter (n, p), then X = 0, 1, · · · , n such that

P (X = k) =

(
n

k

)
pk(1− p)n−k.

In this case, we write X ∼ Bin(n, p). Note that if X1, · · · , Xn ∼ Ber(p), then the sum Sn = X1+X2+· · ·+Xn

is a binomial random variable with parameter (n, p).

Geometric. If X is a geometric random variable with parameter p, then

P (X = n) = (1− p)n−1p

for n = 1, 2, · · · . Geometric random variable can be constructed using ‘the number of trials of the first
success occurs’. Consider the case we are flipping coin with a probability p that we gets a head (this is
a Bernoulli (p) random variable). Then the number of trials we made to see the first head is a geometric
random variable with parameter p.

Poisson. If X is a Poisson random variable with parameter λ, then X = 0, 1, 2, 3, · · · and

P (X = k) =
λke−λ

k!
.

In this case, we write X ∼ Poi(λ). Poisson is often used to model a counting process. For instance, the
intensity of an image is commonly modeled as a Poisson random variable.

1.3.2 Continuous Random Variables

Uniform. If X is a uniform random variable over the interval [a, b], then

p(x) =
1

b− a
I(a ≤ x ≤ b),

where I(statement) is the indicator function such that if the statement is true, then it outputs 1 otherwise
0. Namely, p(x) takes value 1

b−a when x ∈ [a, b] and p(x) = 0 in other regions. In this case, we write
X ∼ Uni[a, b].

If X is a uniform random variable over some surface or more generally object C, then the PDF of X is,

p(x) =
1

volume(C)
I(x ∈ C).

For any A ⊆ C, it holds that P (X ∈ A) = volume(A)
volume(C) .

Normal. If X is a normal random variable with parameter (µ, σ2), then

p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 .

In this case, we write X ∼ N(µ, σ2).

Exponential. If X is an exponential random variable with parameter λ, then X takes values in [0,∞) and

p(x) = λe−λx.
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In this case, we write X ∼ Exp(λ). Note that we can also write

p(x) = λe−λxI(x ≥ 0).

Laplace, or double exponential. A Laplace or double exponential random variable X with parameter
λ has the following PDF

p(x) =
λ

2
e−λ|x|.

Cauchy. If X ∈ R is a Cauchy random variable with parameter µ, σ2, then it has a PDF

p(x) =
1

πσ

1

1 + (x− µ)2/σ2
.

Interesting fact: the Cauchy distribution has *no* mean (average); the parameter µ is the median.

Gamma. A Gamma random variable X ≥ 0 has two parameters α, λ > 0 and has a PDF

p(x) =
λα

Γ(α)
xα−1e−λxI(x ≥ 0).

The function Γ(α) =
∫
xα−1e−xdx is known as the Gamma function.

Beta. The Beta distribution is a continuous distribution on [0, 1]. So it is often used to model a ratio or a
probability. If X is a Beta random variable with parameter α, β, then

p(x) =
1

B(α, β)
xα−1(1− x)β−1I(0 ≤ x ≤ 1),

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) .

Logistic. The logistic distribution is a random variable whose CDF follows from the logit function. It has
two parameter α ∈ R, β > 0 and has a CDF

F (x) =
eα+βx

1 + eα+βx
=

1

1 + e−α−βx
.

The PDF is

p(x) =
βe−α−βx

(1 + e−α−βx)2
=

βeα+βx

(1 + eα+βx)2

1.4 Random Vectors

We first need to define joint distribution functions, see Ch.4 of Casella and Berger (2021).

A multivariate random variable (X1, X2, . . . , Xn) is called a random vector (denoted rvtr in Perlman (2019)).
The individual random variables in a random vector must arise in the same experiment (e.g., all features
of a subject, height and weight), so they may or may not be correlated (later lecture). For simplicity, we
consider random vectors of length two in the results below.

Definition 1.7 The joint cumulative distribution function (joint CDF) of two random variables X and Y
is defined as

FXY (x, y) = P (X ≤ x, Y ≤ y), for all x, y.
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Theorem 1.8 For random variables X and Y with (marginal) CDFs FX(x) and FY (y), the joint CDF
FXY (x, y) satisfies the following

(1) FX(x) = limy→+∞ FXY (x, y), for any x.

(2) FY (y) = limx→+∞ FXY (x, y), for any y.

(3) limx,y→+∞ FXY (x, y) = 1.

(4) limx→−∞ FXY (x, y) = limy→−∞ FXY (x, y) = 0.

(5) P (x1 < X ≤ x2, y1 < Y ≤ y2) = FXY (x2, y2)− FXY (x1, y2)− FXY (x2, y1) + FXY (x1, y1).

When the vector is multivariate continuous (both variables are continuous), the corresponding joint PDF is

pXY (x, y) =
∂2F (x, y)

∂x∂y
.

A marginal PDF of X can be obtained from pXY (x, y) by integrating over y:

pX(x) =

∫ ∞

−∞
pXY (x, y)dy.

When both X and Y are discrete (the random vector (X,Y ) is disrete), the joint PMF is given by

pXY (x, y) = P (X = x, Y = y).

A marginal PDF of X can be obtained from pXY (x, y) by summing over y where pX(x) = P (X = x) =∑
y P (X = x, Y = y).

The joint distribution contains information about X and Y beyond their marginal distributions, i.e., infor-
mation about their dependence. Thus, the joint distribution determines all marginal distributions but not
conversely.

1.5 Conditional Probability

Now we have a basic mathematical model for probability. This model also defines an interesting quantity
called conditional probability. For two events A,B ∈ F , such that P (B) ̸= 0, the conditional probability of
A given B is

P(A|B) =
P(A ∩B)

P(B)
.

Note that when B is fixed, the function P(·|B) : F 7→ R is another probability measure.

In general, P(A|B) ̸= P(B|A). This is sometimes called as the prosecutor’s fallacy:

P(evidence|guilty) ̸= P(guilty|evidence).

Example (Exponential). Let X be an exponential random variable with parameter λ > 0 and consider
two positive numbers x, y > 0. What is the probability P (X > x + y|X > y)? In this case the two events
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A = {X > x + y} (formally, A = {ω : X(ω) > x + y}) and B = {X > y}. It is easy to see that A ⊂ B so
A ∩B = A. Thus,

P (X > x+ y|X > y) = P(A|B) =
P(A ∩B)

P(B)
=

P(A)

P(B)
=

P (X > x+ y)

P (X > y)
.

It is easy to see that for an exponential RV X, P (X > y) = e−λy, which implies

P (X > x+ y|X > y) =
P (X > x+ y)

P (X > y)
= e−λx = P (X > x).

Thus, the probability only depends on the increment x, not y. This is known as the memoryless property.

1.6 Conditional Distribution

When both variables in a random vector are continuous, the conditional PDF of Y given X = x is

pY |X(y|x) = pXY (x, y)

pX(x)
,

where pX(x) =
∫∞
−∞ pXY (x, y)dy is the marginal density function of X.

When both X and Y are discrete, the conditional PMF of Y given X = x is

pY |X(y|x) = pXY (x, y)

pX(x)
,

where pX(x) = P (X = x) =
∑

y P (X = x, Y = y).

Example (triangle uniform). Consider two random variables (X,Y ) that have a uniform PDF over the
region D = {(x, y) : x ≥ 0, y ≥ 0, x + y ≤ 1}. It is easy to see that p(x, y) = 2 when (x, y) ∈ D and 0
otherwise. What is the conditional PDF of pY |X(y|x)? Because the joint PDF is a constant, one can easily
see that pY |X(y|x) will also be a constant. The key is to identify what is the feasible range of y when X = x
. We have two constraints y ≥ 0 and y ≤ 1− x so the feasible range of y is [0, 1− x]. Thus,

pY |X(y|x) = 1

1− x
I(0 ≤ y ≤ 1− x).

Example (Beta-Bernoulli). Consider two random variables X ∈ {0, 1} and Y ∈ [0, 1] such that given Y ,
the random variable X is a Bernoulli random variable with parameter p = Y . Namely,

P (X = 1|Y ) = Y, P (X = 0|Y ) = 1− Y.

Also, assume that Y follows a Beta distribution with parameters α, β. We are interested in the conditional
distribution of Y given X = x.

The conditional PDF/PMF
p(x|y) = yx(1− y)1−x.

Thus, the joint PDF/PMF

p(x, y) = p(x|y)p(y) = yx(1− y)1−x · 1

B(α, β)
yα−1(1− y)β−1.

There are two methods we can now employ to compute p(y|x):
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• Method 1: Compute pX(x) from pXY (x, y) and then use conditional distribution formula to compute
p(y|x).

• Method 2: Use the “proportional” trick below.

Here is the trick: because p(y|x) = p(x,y)
p(x) ∝ p(x, y), we only need to focus on the part of p(x, y) that involves

y. The above product shows that

p(y|x) ∝ p(x, y) ∝ yα+x−1(1− y)β−x.

Therefore,
p(y|x) = C · yα+x−1(1− y)β−x,

where C is some constant in R. Since we know that p(y|x) is a density function, integrating it over all possible
values of y must be equal to 1, we can use this information to compute C. After some computations, we can
conclude that the distribution of Y conditional on X = x is going to be Beta distribution with parameters
(α′ = α+ x, β′ = β + (1− x)).

The Beta-Bernoulli example illustrates the fact that the conditioning operation can be viewed as an infor-
mation flow. Suppose that Y is a variable of interest that is unobserved but it implicitly determines the
distribution of X. And X is something that we can measure/observe (think of it as the data). Before seeing
X, we place a model that Y is from a Beta distribution with parameter α, β. After observing X, this infor-
mation should improve our knowledge about Y . A simple mathematical model to describe the improvement
from the information is the conditional distribution. As is shown in the above example, the conditional
distribution of Y given X is a Beta distribution with parameter α+X,β+(1−X). The change of parameter
is an example of how the observed data X improves our understanding of an unobserved quantity Y .

1.7 Independence

Intuitively, when we say that two events are independent, we refer to the case that the two events will not
interfere each other. Two events A and B are independent if

• P(A|B) = P(A), or equivalently,

• P(B|A) = P(B), or equivalently,

• P(A ∩B) = P(A)P(B).

For three events A,B,C, we say events A and B are conditional independent given C if

P(A ∩B|C) = P(A|C)P(B|C)

Two random variables X and Y are independent under the model (Ω, P ), denoted X ⊥ Y , or X ⊥⊥ Y , if
{X ∈ A} and {Y ∈ B} are independent for each pair of events A ⊆ ΩX and B ⊆ ΩY .

Random variables X and Y are independent if the joint CDF can be factorized as

F (x, y) = P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y).

One can show that for a jointly discrete or jointly continuous random vector (X,Y ), X ⊥⊥ Y if and only if
one of the following equivalent conditions hold
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• pXY (x, y) = pX(x)pY (y), for all (x, y) ∈ ΩXY ;

• pY |X(y|x) = pY (y), for all (x, y) ∈ ΩXY ;

• pX|Y (x|y) = pX(x), for all (x, y) ∈ ΩXY .

Independence requires that the joint range of (X,Y ) is the Cartesian product of the marginal ranges:

ΩXY = ΩX × ΩY .

This is a necessary condition, but not a sufficient condition for independence!

Now we use the information interpretation (in the Beta-Bernoulli example) to think of the independence.
The independence implies pY |X(y|x) = p(y), which can be interpreted that knowing X does NOT change
the distribution of Y . This is essentially what an intuitive meaning of independence should be–knowing the
outcome of one variable does not provide any information about another variable.

When we have many random variables X1, · · · , Xn, they are (mutually) independent if the joint CDF

F (x1, x2, · · · , xn) = F (x1)F (x2) · · ·F (x2),

which implies

p(x1, x2, · · · , xn) = p(x1)p(x2) · · · p(xn).

Example (Uniform on a disk). Consider two random variables X,Y such that they jointly follow from
a distribution that is uniform over the unit disk S0 = {(x, y) : x2 + y2 ≤ 1}. Clearly, X and Y are not
independent because when X = 0, the feasible range of Y is [−1, 1] while when X = 1, the only possible
value of Y is 0.

Now suppose we reparametrize the two random variables using polar coordinates (R,Θ) ∈ [0, 1] × [0, 2π].
Then F (r, θ) = P (R ≤ r,Θ ≤ θ), and note that since we know the distribution is uniform on a disc we have
that

F (r, θ) = P (R ≤ r,Θ ≤ θ)

=
area of the sector defined by R ≤ r and Θ ≤ θ

total area of the disc

=
1

π
· πr2 · θ

2π

= r2 · θ

2π
= FR(r)FΘ(θ),

FR(r) = r2, 0 ≤ r ≤ 1

FΘ(θ) =
θ

2π
, 0 ≤ θ ≤ 2π.

So R ⊥⊥ Θ, i.e., they are independent (see also example 1.12 of Perlman (2019).)

Example (Independence and information). In the Beta-Bernoulli example, we have seen a probabilistic
approach to infer an unobserved variable Y using the information from another random variableX. That idea
is something related to Bayesian inference. Here we will introduce another approach to infer an unobserved
quantity θ without assuming that θ is random. Suppose we observeX1, · · · , Xn ∈ {0, 1} that are independent.
We assume that they are all from the same Bernoulli distribution with an unknown parameter θ0 = P (Xi =
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1). In this case, we say X1, · · · , Xn are IID (independently and identically distributed). Given X1, · · · , Xn,
how do we infer θ0? Under a probabilistic model, any parameter θ would imply a joint PMF

p(x1, · · · , xn; θ) = p(x1; θ)p(x2; θ) · · · p(xn; θ)

due to the independence. Since it is a product term, we take a logarithm, which leads to

log p(x1, · · · , xn; θ) = log p(x1; θ) + log p(x2; θ) + · · ·+ log p(xn; θ).

Since X1, · · · , Xn are observed, we can view the above function as a function of θ, and this function is known
as the log-likelihood function

ℓ(θ|X1, · · · , Xn)︸ ︷︷ ︸
Total information

= log p(X1, · · · , Xn; θ) =

n∑
i=1

log p(Xi; θ) =

n∑
i=1

ℓ(θ|Xi)︸ ︷︷ ︸
Information of the i-th obs.

.

Informally, we can call ℓ(θ|X1, · · · , Xn) as the total information from X1, · · · , Xn on θ. The independence
assumption implies the above equality, which means that under independence, the total information is the
addition of all individual information. In the likelihood framework, information about θ is determined by
the log-likelihood function (Total information term). Note that unlike the Beta-Bernoulli example, here we
did not specify any distribution of θ–it is just an unknown quantity and we use the likelihood function to
infer plausible value of it. The famous maximal likelihood estimator (MLE) finds an estimated value of θ by
maximizing the log-likelihood value.

1.8 Total probability and the Bayes theorem

Probability measure also has a useful property called law of total probability. If B1, B2, ..., Bk forms a
partition of Ω, then

P(A) =

k∑
i=1

P(A|Bi)P(Bi).

In particular, P(A) = P(A|B)P(B) + P(A|Bc)P(Bc). And this further implies the famous Bayes rule: Let
A1, ..., Ak be a partition of Ω. If P(B) > 0 then, for i = 1, ..., k:

P(Ai|B) =
P(B|Ai)P(Ai)∑k

j=1 P(B|Aj)P(Aj)
.

For random variables, we also have the Bayes theorem:

pX|Y (x|y) =
pXY (x, y)

pY (y)

=
pY |X(y|x)pX(x)

pY (y)

=


pY |X(y|x)pX(x)∫

pY |X(y|x′)pX(x′)dx′ , if X,Y are absolutely continuous.
pY |X(y|x)pX(x)∑

x′ pY |X(y|x′)pX(x′) , if X,Y are discrete.

Example (Poisson-Binomial). Consider two random variables X and Y such that X ∼ Poisson(λ) and
Y |X = x is from a Binomial distribution with parameters (X, p). What will the marginal distribution of Y
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be? To study this, we attempt to compute the probability P (Y = y).

P (Y = y) =
∑
x

P (Y = y,X = x)

=
∑
x≥y

P (Y = y|X = x)P (X = x) (Think about why x ≥ y)

=
∑
x≥y

(
x

y

)
py(1− p)x−y λ

xe−λ

x!
.

Using the fact that
(
x
y

)
= x!

(x−y)!y! and set k = x− y, we can rewrite the above as

P (Y = y) =
∑
x≥y

(
x

y

)
py(1− p)x−y λ

xe−λ

x!

= pye−λ
∑
x≥y

x!

(x− y)!y!
(1− p)x−yλx 1

x!

=
pye−λ

y!

∞∑
k=0

1

k!
(1− p)kλy+k

=
(λp)ye−λp

y!

∞∑
k=0

1

k!
(1− p)kλke−λ(1−p)

︸ ︷︷ ︸
=1

,

which is the PMF of Poisson(λp). Thus, Y follows from a Poisson distribution with parameter λp.

1.9 Conditional independence

For three RVs X,Y, and Z, we say X,Y are conditional independent given Z if

P (X ≤ x, Y ≤ y|Z = z) = P (X ≤ x|Z = z)P (Y ≤ y|Z = z)

for every x and y and PZ-almost everywhere of z. PZ-almost everywhere of z means that the above equality
holds for all z except for a set of values that has 0 probability. It is a slightly weaker notion than ‘for every
z’. We use the notation

X ⊥⊥ Y |Z
for denote the case where X,Y are conditional independent given Z.

Note that X ⊥⊥ Y |Z also implies

P (X ≤ x|Y = y, Z = z) = P (X ≤ x|Z = z)

for every x and PY,Z-almost everywhere of (y, z).

Beware! Independence is not the same as conditional independence, i.e., X ⊥⊥ Y ̸⇔ X ⊥⊥ Y |Z.

Example (conditional independence ̸⇒ indepedence). Assume X ⊥⊥ Y |Z and Z ∈ {0, 1} such that
when Z = 0, X and Y are both from a uniform distribution over [0, 1] and when Z = 1, X and Y are from
a uniform distribution over [2, 3]. Assume that Z has an equal probability of being 0 or 1. Marginally, both
X and Y are from a uniform distribution over the set [0, 1]∪ [2, 3]. However, if we observe X = 2.5, we know
that Y has to be from a uniform distribution over [2, 3] so P (Y ∈ [0, 1]|X = 2.5) = 0 ̸= P (Y ∈ [0, 1]) = 0.5.

The following is a theorem about different ways of saying conditional independence.
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Theorem 1.9 Let pXY Z be the joint PDF/PMF of X,Y, and Z. Then the followings are equivalent:

(i) X ⊥⊥ Y |Z.

(ii) pXY |Z(x, y|z) = pX|Z(x|z)pY |Z(y|z) almost everywhere (a.e.).

(iii) pX|Y Z(x|y, z) = pX|Z(x|z) a.e.

(iv) pXY Z(x, y, z) =
pXZ(x,z)pY Z(y,z)

pZ(z) a.e.

(v) pXY Z(x, y, z) = g(x, z)h(y, z), where g and h are some (measurable) functions.

(vi) pX|Y Z(x|y, z) = w(x, z), where w is some (measurable) function.

Proof: The equivalence between (i), (ii), (iii), and (iv) are trivial so we focus on case (v) and (vi).

(ii) ⇒ (v):
Because

pXY |Z(x, y|z) = pX|Z(x|z)pY |Z(y|z),

we have
pXY Z(x, y, z)

pZ(z)
=

pXZ(x, z)

pZ(z)

pY Z(y, z)

pZ(z)

so

pXY Z(x, y, z) =
pXZ(x, z)pY Z(y, z)

pZ(z)
= g(x, z)h(y, z),

for g(x, z) = pXZ(x,z)
pZ(z) and h(y, z) = pY Z(y, z), for instance. Hence, (v) holdes..

(v) ⇒ (vi):
Based on (v), we have

pY Z(y, z) =

∫
pXY Z(x, y, z)dx = h(y, z)

∫
g(x, z)dx = h(y, z)q(z).

Thus,

pX|Y Z(x|y, z) =
pXY Z(x, y, z)

pY Z(y, z)
=

g(x, z)h(y, z)

h(y, z)q(z)
=

g(x, z)

q(z)
= w(x, z).

Finally, we show that (vi) ⇒ (iii):

pX|Z(x|z) =
∫

pXY |Z(x, y|z)dy =

∫
pX|Y Z(x|y, z)pY |Z(y|z)dy

= w(x, z)

∫
pY |Z(y|z)dy = w(x, z) = pX|Y Z(x|y, z).

Here are five important properties of conditional independence. For more details see Dawid (1979), or
Chapter 3.1 of Lauritzen (1996).

Theorem 1.10 Let X,Y, Z,W be RVs, the following properties hold:
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(C1) (symmetry) X ⊥⊥ Y |Z ⇐⇒ Y ⊥⊥ X|Z.

(C2) (decomposition) X ⊥⊥ Y |Z =⇒ h(X) ⊥⊥ Y |Z for any (measurable) function h.
A special case is: (X,W ) ⊥⊥ Y |Z =⇒ X ⊥⊥ Y |Z.

(C3) (weak union) X ⊥⊥ Y |Z =⇒ X ⊥⊥ Y |Z, h(X) for any (measurable) function h.
A special case is: (X,W ) ⊥⊥ Y |Z =⇒ X ⊥⊥ Y |(Z,W )

(C4) (contraction)
X ⊥⊥ Y |Z and X ⊥⊥ W |(Y, Z) ⇐⇒ X ⊥⊥ (W,Y )|Z.

(C5) (intersection) If the joint PDF pXY ZW (x, y, z, w) is positive almost everywhere, then

X ⊥⊥ Y |(W,Z) and X ⊥⊥ W |(Y,Z) ⇐⇒ X ⊥⊥ (W,Y )|Z.

(C5) can be generalized beyond positive densities, but it gets rather technical.
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Lecture 2: Transforming continuous random variables
Instructor: Emilija Perković

Useful additional reading: Chapter 2.1 of Casella and Berger (2021), Chapter 2 of Perlman (2019).

Useful recall: derivative rules (product, quotient, chain rule), using chain rule to compute the derivative
of the inverse function. Taylor and Maclaurin series. Various representations of e.

In the previous lecture, we have seen a couple of distributions that have nice properties. When working with
data, we may perform some transformation of random variables. Suppose we know the distribution of a
random variable before the transformation, does this give us any hint on the distribution of the transformed
variable?

2.1 One function of one random variable

Let X be a continuous random variable whose PDF pX(x) is known. Consider a given function f and another
random variable Y = f(X). Since the input X is random, the output Y is often random as well. What will
the distribution of Y be?

When f is differentiable, we have the following useful theorem. While the below result is useful, I would
suggest remembering the proof rather than the result itself.

Lemma 2.1 Let X be a continuous r.v. on [a, b], a, b ∈ R with PDF pX . Let g : R → R be a continuous,
strictly increasing and differentiable function, then the PDF of Y = g(X) is

pY (y) =

{
pX(g−1(y))
g′(g−1(y)) , g(a) ≤ y ≤ g(b)

0, otherwise.

Proof:

To start with, we consider the CDF of Y :

P (Y ≤ y) = P (g(X) ≤ y)

= P (X ≤ g−1(y)).

Note that since g(x) is strictly increasing and continuous, g−1(y) exists. The PDF will be the derivative of
the CDF, leading to

pY (y) =
d

dy
P (Y ≤ y)

=
d

dy
P (X ≤ g−1(y))

= pX(g−1(y))
d

dy
g−1(y)

=
pX(g−1(y))

g′(g−1(y))
,

2-1
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which completes the proof. Note that we can obtain that (g−1(y))′ = 1
g′(g−1(y)) , by applying the derivative

chain rule to g ◦ g−1(y) = y and solving for (g−1(y))′.

Example. X ∼ Exp(λ), and Y =
√
X. What is the density of Y ? Hint: Use the above lemma.

When g(x) is not strictly increasing, but is instead strictly decreasing a similar result to above can be derived.
Let’s consider the general case when g(x) is strictly monotonic (can be either increasing or decreasing).

Theorem 2.2 Let X be a continuous r.v. with PDF pX . Let g : R → R be a differentiable and strictly
monotonic function with inverse denoted γ = g−1, then the p.d.f of Y = g(X) is

pY (y) =

{
|γ′(y)|pX(g−1(y)) y ∈ g(R),
0 otherwise

where γ′(y) = 1
g′(g−1(y)) .

Proof: Denote a = infx(g(x)), b = supx(g(x)), (possibly a = −∞, or b = +∞) If t < a, FY (t) = P (g(X) ≤
a) = 0 so fY (t) = 0. If t > b, FY (t) = P (g(X) ≤ t) = 1 so fY (t) = 0.

If g is strictly increasing, for t ∈ (a, b), then γ(t) := g−1(t) is defined,

FY (t) = P (Y ≤ t) = P (g(X) ≤ t) = P (X ≤ g−1(t)) = FX(γ(t))

so pY (t) = γ′(t)pX(γ(t)).

If g is strictly decreasing, for t ∈ (a, b), then g−1(t) is defined,

FY (t) = P (Y ≤ t) = P (g(X) ≤ t) = P (X ≥ g−1(t)) = 1− FX(γ(t))

so pY (t) = −γ′(t)pX(γ(t))

For t ∈ (a, b), g ◦ g−1(t) = t so γ′(t) = 1
g′(g−1(t)) so γ′(t) < 0 for g decreasing.

Note that if g is not defined on R, but rather, g : B → R, for some B ⊆ R, we can still use the above theorem
for y ∈ g(B) as long as P (X ∈ B) = 1. We will have that pY (y) = 0, for y /∈ g(B).

Example. Assume X ∼ Uniform[1, e] and consider that we are interested in the PDF of Y = −2 logX.
Here, g(x) = −2 log(x), where x ∈ [1, e]. In this case, g′(x) = − 2

X , so g′(x) < 0, for x ∈ [1, e], hence, g is
strictly decreasing.

Moreover, for x = 1, −2 log(x) = 0, and for x = e, −2 log(x) = −2. So the range of possible values for Y is
[−2, 0].

Note also that pX(x) = 1
e−1I(1 ≤ x ≤ e) and g−1(y) = e−

1
2y. We now apply Theorem 2.2. Then the PDF

of Y will be

pY (y) =
1

2(e− 1)
e−

1
2yI(−2 ≤ y ≤ 0).

How do we approach the case when g(·) is not a strictly monotonic function? → Split the domain of X
into segments on which g(X) is monotonic. Use law of total probability!
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Example. Consider X ∼ N(0, 1) and Y = X2. What is the distribution of Y ? Note that the underlying
transformation g : x → x2 is not monotonic (and also not invertible) as a function from R to R+.

However, g is monotonic (and invertible) when restricted to R+ or R− \ {0}, i.e.,

• if x ≥ 0 and x2 = t then x =
√
t,

• if x < 0 and x2 = t then x = −
√
t.

First, clearly P (Y ≤ t) = 0 for t ≤ 0, so we’ll consider t > 0. Let us partition R as R = R+ ∪ (R− \ {0}).
Then by law of total probability

P (Y ≤ t) = P (X2 ≤ t and X ≥ 0) + P (X2 ≤ t and X < 0)

(∗)
= P (X ≤

√
t and X ≥ 0) + P (−

√
t ≤ X and X < 0)

= P (0 ≤ X ≤
√
t) + P (−

√
t ≤ X < 0)

= FX(
√
t)− FX(0) + FX(0)− FX(−

√
t)

where in (∗) we carefully used that g is strictly decreasing on R− for the second term.

We then get that

pY (y) =

{
1

2
√
ypX(

√
y) + 1

2
√
ypX(−√

y) if y ≥ 0

0 if y ≤ 0

Replacing pX(x) = 1√
2π

e−x2/2 into the above equation, we obtain

pY (y) =

{
1√
y

1√
2π

e−y/2 = 1√
2π

y−
1
2 e−

1
2y if y ≥ 0

0 if y ≤ 0

which implies Y ∼ Gamma( 12 ,
1
2 ). Note: Gamma ( 12 ,

1
2 ) is the same as χ2

1, the chi-squared distribution with
degree of freedom 1.

Example. (Work it out on your own.) Suppose that Y is a continuous random variable with CDF FY and X
is a uniform random variable within [0, 1]. Then you can show that Z = F−1

Y (X) has a CDF FZ(z) = FY (z).

2.2 One function of two or more random variables

In practice, we may encounter problems involving a function of two or more random variables. Namely,
suppose we have access to a random vector (X,Y ) whose joint CDF FXY (x, y) is known and we are interested
in the distribution of another random variable U = g(X,Y ) for some given function g. In this case, a general
strategy again is to investigate the underlying CDF and take the derivative to obtain the corresponding
PDF. Note that first you need to determine the range of possible values for U (drawing is helpful). We will
illustrate the idea via a few examples.

Example. Consider random vector (X,Y ) that is uniform distributed over [0, 1] × [0, 1] and that random
variables X and Y both have Uniform([0, 1]) distributions. We will use that X and Y are independent random
variables in this case, but proving that is left as an exercise. We are interested in deriving the distribution
of random variable U = g(X,Y ).
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• Case 1: U = X + Y .

To find the possible values of U , i.e., {U = X + Y ≤ u} we need to find intersect regions [0, 1]× [0, 1]
and x+y ≤ u. This intersection is empty for u ≤ 0 and is equal to the region [0, 1]× [0, 1], when u ≥ 2.
Hence, P (U ≤ u) = 0, for u < 0, and P (U ≤ u) = 1, for u ≥ 2.

When u ∈ [0, 2], we can easily work out P (U ≤ u) as the area of the intersecting region. (Need to
know how to compute an area of a rectangle, and a triangle.)

FU (u) = P (U ≤ u)

=


0, u < 0

u2/2, 0 ≤ u ≤ 1

1− (2− u)2/2, 1 ≤ u ≤ 2

1, u > 2

.

The PDF pU (u) will be

pU (u) =


0, u < 0

u, 0 ≤ u ≤ 1

2− u, 1 ≤ u ≤ 2

0, u > 2

.

• Case 2: U = max{X,Y }. A common trick to compute the distribution of a maximum of two or more
independent random variables is based on the following insight:

{max{X,Y } ≤ u} ≡ {X ≤ u, Y ≤ u}.

Therefore,

FU (u) = P (U ≤ u) = P (max{X,Y } ≤ u) = P (X ≤ u, Y ≤ u) = P (X ≤ u)P (Y ≤ u),

which implies FU (u) = u2 and pU (u) = 2u when u ∈ [0, 1].

• Case 3: U = min{X,Y }. The case of minimum is similar to the case of maximal but we will use
analogous reasoning to Case 2, by relying on the following insight:

{min{X,Y } > u} ≡ {X > u, Y > u}.

Therefore,

1− FU (u) = P (U > u) = P (min{X,Y } > u) = P (X > u, Y > u) = P (X > u)P (Y > u) = (1− u)2,

Thus, FU (u) = 1− (1− u)2 so pU (u) = 2− 2u for u ∈ [0, 1].

Example (minimum of many uniforms). Now consider X1, · · · , Xn that are IID Uniform([0, 1]). Define
U = nmin{X1, · · · , Xn}. What will the distribution of U be when n is large? Using the trick that we have
discussed,

{min{X1, · · · , Xn} >
u

n
} ≡ {X1 >

u

n
, · · · , Xn >

u

n
},

so

1− FU (u) = P
(
min{X1, · · · , Xn} >

u

n

)
=

n∏
i=1

P
(
Xi >

u

n

)
=

(
1− u

n

)n

→ e−u.

As a result, FU (u) → 1−e−u and pU (u) → e−u so when n is large, U behaves like an exponentially distributed
random variable.

Example (exponential distributions). Consider X,Y
IID∼ Exponential(1).
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• Sum of two exponentials. What is the distribution of U = X + Y ? A simple trick is to fixed one
variable at a time and make good use of integration. Specifically, for a given u > 0,

FU (u) = P (U ≤ u)

= P (X + Y ≤ u)

=

∫
x+y≤u

e−x−ydxdy

=

∫ u

x=0

∫ u−x

y=0

e−x−ydydx

=

∫ u

x=0

e−x(1− ex−u)dx

= 1− e−u − ue−u.

Thus, pU (u) = ue−u.

• Minimum of two exponentials. Now we consider V = min{X,Y }. Using the same trick as the
minimum of many uniforms, i.e.,

{min{X,Y } > v} ≡ {X > v, Y > v}

so
1− FV (v) = P (X > v)P (Y > v) = e−2v,

which implies that V ∼ Exp(2). In fact, you can easily generalize it to showing that if X1, · · · , Xn ∼
Exp(λ), then min{X1, · · · , Xn} ∼ Exp(nλ).

• Difference. Consider
Z = max{X,Y } −min{X,Y } = |X − Y |.

What will the distribution of Z be?

Using a direct computation, we see that

FZ(z) = P (Z ≤ z)

= P (|X − Y | ≤ z)

= P (−z ≤ X − Y ≤ z)

= P (X − Y ≤ z)− P (X − Y < −z)

= P (X ≤ Y + z)− 1 + P (X − Y ≥ −z)

= −1 + P (X ≤ Y + z) + P (Y ≤ X + z)

= −1 + 2P (X ≤ Y + z) X,Y are identically distributed.

Moreover,

P (X ≤ Y + z) =

∫ ∞

y=0

∫ y+z

x=0

e−xdxe−ydy

=

∫ ∞

y=0

(1− e−y−z)e−ydy

= 1− e−z

∫ ∞

0

e−2ydy

= 1− 1

2
e−z.
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As a result,
FZ(z) = −1 + 2P (X ≤ Y + z) = 1− e−z,

which is the CDF of Exp(1)! This is another memoryless property.

• Ratio. Lastly, we consider W = X
X+Y and studies its distribution. Clearly, 0 ≤ w ≤ 1 so we will focus

on the range [0, 1].

FW (w) = P

(
X

X + Y
≤ w

)
= P (X ≤ w(X + Y ))

= P ((1− w)X ≤ wY )

= P

(
X ≤ w

1− w
Y

)
=

∫ ∞

y=0

∫ w
1−w y

x=0

e−xdxe−ydy

=

∫ ∞

y=0

(1− e
−w
1−w y)e−ydy

= 1−
∫ ∞

0

e−
1

1−w ydy

= 1− 1 + w = w.

Thus W ∼ Unif[0, 1].

Useful properties about normal (please verify them).

• Let X ∼ N(µ1, σ
2) and Y ∼ N(µ2, σ

2
2) be independent. Then

X + Y ∼ N(µ1 + µ2, σ
2
1 + σ2

2)

Also, for any real number a,
aX ∼ N(aµ1, a

2σ2
1).

• Let X1, · · · , Xn be IID normal random variables from N(µ, σ2). Then the sample mean

X̄n =
1

n

n∑
i=1

Xi ∼ N(µ, σ2/n).

• Let X1, · · · , Xn be IID N(0, 1). Then Z1 = X2
1 follows the χ2 distribution with a degree of freedom 1.

And Zn =
∑n

i=1 X
2
i follows the χ2 distribution with a degree of freedom n.
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Lecture 3: Expectation and basic asymptotic theories
Instructor: Emilija Perković Compiled on: 2023-11-01, 11:14:26

Useful Additional Reading: Chapters 2 and 3 of Casella and Berger (2021). Chapter 3 of Perlman (2019).
For the super motivated Section 25 of Billingsley (2017).

Useful recall: Taylor expansions, representations of e, rates of convergence, little o notation, computing
the minimum of f(x).

3.1 Expectation

For a function g(x), the expectation of g(X) is

E(g(X)) =

∫
g(x)dF (x) =

{∫∞
−∞ g(x)p(x)dx, if X is continuous∑
x g(x)p(x), if X is discrete

.

In the simplest case g(x) = x,

E(X) =

∫
xdF (x) =

{∫∞
−∞ xp(x)dx, if X is continuous∑
x xp(x), if X is discrete

.

is known as the the mean (expectation) of a R.V. X. Let µ = E(X), the variance of X is Var(X) =
E((X − µ)2) = E((X − E(X))2). The mean is a common measure of the “center” of a distribution and the
variance is a common measure of the spread of a distribution.

The m-th moment of a random variable X is
E(Xm).

Let µ = E(X) be the mean/first moment of X, the m-th centered moment of X is

E((X − µ)m).

Thus, the variance is the second centered moment.

Example.

• X ∼ Binomial(n, p). Then E(X) = np and Var(X) = np(1− p).

• X ∼ Geometric(p). Then E(X) = 1/p and Var(X) = (1− p)/p2.

• X ∼ Poisson(λ). Then E(X) = λ and Var(X) = λ.

• X ∼ Normal(µ, σ2). Then E(X) = µ and Var(X) = σ2.

• X ∼ Exponential(λ). Then E(X) = 1/λ and Var(X) = 1/λ2.

• X ∼ Gamma(α, λ). Then E(X) = α/λ and Var(X) = α/λ2.

• X ∼ Beta(α, β). Then E(X) = α
α+β and Var(X) = αβ

(α+β)2(α+β+1) .

3-1



3-2 Lecture 3: Expectation and basic asymptotic theories

• X ∼ Uniform(a, b). Then E(X) = (a+ b)/2 and Var(X) = (b− a)2/12.

Linearity and decomposability of the expectation:

E

 k∑
j=1

(ajgj(X) + bj)

 =

k∑
j=1

(aj · E(gj(X)) + bj),

where aj , bj , j ∈ {1, . . . k} are constants. Note that the above equality holds even if gj1(X) and gj2(X) are
dependent.

When a set of mutually random variables X1, · · · , Xn are independent, then

E (X1 ·X2 · · ·Xn) = E(X1) · E(X2) · · ·E(Xn).

In fact, for a set of mutually independent random variables, X1, · · · , Xn

E (g1(X1) · g2(X2) · · · gn(Xn)) = E(g1(X1)) · E(g2(X2)) · · ·E(g3(Xn)).

Aside: For independent random variables X1 and X2, X1 ⊥ X2 and functions f, g : R → R it holds:
f(X1) ⊥ g(X2). Similarly, for random variables X1 and X2 that are conditionally independent given rv X3,
X1 ⊥ X2|X3 and functions f, g : R → R it holds: f(X1) ⊥ g(X2)|X3.

For two random variables X and Y with means being E(X) = µx and E(Y ) = µy and variance being σ2
x and

σ2
y. The covariance

Cov(X,Y ) = E((X − µx)(Y − µy)) = E(XY )− µxµy

and the (Pearson’s) correlation

ρ(X,Y ) =
Cov(X,Y )

σxσy
.

When two R.V. are not independent, we have

Var(X ± Y ) = Var(X) + Var(Y )± 2Cov(X,Y ).

The independence implies the covariance (and correlation) is 0, i.e.,

X ⊥ Y ⇒ Cov(X,Y ) = 0.

As a result, if X ⊥ Y ,
Var(X + Y ) = Var(X) + Var(Y ).

A more general result is that for independent random variables X1, · · · , Xn, we have

Var

(
n∑

i=1

(aiXi + bi)

)
=

n∑
i=1

a2i · Var(Xi),

for constants ai, bi, i ∈ {1, . . . , n}.

Example (Binomial). Here we illustrate how the above properties can be useful in computing the variance
of some distributions. Consider X ∼ Binomial(n, p). By the definition of a Binomial distribution, we can
rewrite X = Y1 + Y2 + · · ·+ Yn, where each Yi is an independent Bernoulli random variable with parameter
p. Thus,

Var(X) = Var(Y1 + Y2 + · · ·+ Yn) =

n∑
i=1

Var(Yi) = np(1− p).
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3.2 Moment generating function (MGF)

Moment generating function (MGF) is a powerful function that uniquely describes the underlying features
of a random variable. The MGF of a RV X is

MX(t) = E(etX).

Note that MX may not exist. However, when it exists, it admits the following interpretation in terms of the
moments of RV X. First note that, for g(t) = etX ,

g(t) = etX =

∞∑
n=0

g(n)(0)

n!
tn = 1 + tX +

(tX)2

2!
+

(tX)3

3!
+ · · · .

Thus,

MX(t) = 1 + tµ1 +
t2µ2

2!
+

t3µ3

3!
+ · · · ,

where µj = E(Xj) is the j-th moment of X. Therefore,

E(Xj) = M (j)(0) =
djMX(t)

dtj

∣∣∣∣
t=0

,

where M (j)(0) is the j-th derivative of M(t) at t = 0. Here you see how the moments of X is generated by
the function MX .

The MGF uniquely determines the distribution of a random variable. If two random variables X and Y ,
have the same MGFs then X and Y also have the same distribution (CDF). Side note for the curious: the
MGF is related to the Laplace transform (actually, they are the same).

The MGF has some interesting properties:

• Location-scale. MaX+b(t) = E(e(aX+b)t) = ebtE(eatX) = ebtMX(at).

• Multiplicity. MX+Y (t) = E(e(X+Y )t) = E(eXteY t). Thus,

X ⊥ Y ⇒ MX+Y (t) = E(eXteY t) = E(eXt)E(eY t) = MX(t)MY (t).

Example (Bernoulli and Binomial). Let X ∼ Ber(p). Its MGF is MX(t) = E(etX) = pet+(1− p). Let
Y ∼ Bin(n, p). Using the fact that we can express it as Y = X1 + · · · +Xn, where each Xi is independent
Bernoulli R.V. with parameter p. Its MGF is

MY (t) =

n∏
i=1

MZi(t) = (pet + (1− p))n.

Example (Poisson). Let X ∼ Poisson(λ). Then its MGF is

MX(t) = E(etX) =
∑
x=0

etx
λxe−λ

x!
= e−λ

∞∑
x=0

[λet]x

x!︸ ︷︷ ︸
=eλet

= eλ(e
t−1).

Example (Exponential). Let X ∼ Exp(λ). Then its MGF is

MX(t) = E(etX) =

∫ +∞

0

etxλe−λxdx =
λ

λ− t
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for t < λ.

Example (Normal). Let X ∼ N(µ, σ2). Then you can show that (exercise)

MX(t) = eµt+
1
2σ

2t2 .

You can use the fact that the MGF uniquely determines a distribution to show that any addition of normals
is still normal.

Remark (Characteristic function). A more general function than the MGF is the characteristic function.
Let i be the imaginary number. The characteristic function of a RV X is defined as

ϕX(t) = E(eitX).

Similarly to the MGF, the characteristic function of an RV uniquely determines its distribution. One
additional useful property is that while for a random variable an MGF may not always exist (because,
E(etX) may not always converge, see e.g. the Log-Normal distribution), the characteristic function always
exists. When X is absolutely continuous, the characteristic function is the Fourier transform of the PDF.

3.2.1 Multivariate MGF

The MGF can be defined for a random vector. Consider X = (X1, · · · , Xd) ∈ Rd be a random vector. Then
its MGF will be a function of a d-dimensional argument, t = (t1, · · · , td) ∈ Rd

MX(t) = E(et
TX).

Example. Let X be a multivariate normal MVN(µ,Σ), where µ ∈ Rd is the mean vector and Σ ∈ Rd×d

is the covariance matrix. Namely, each component Xi ∼ N(µi,Σii) and the covariance Cov(Xi, Xj) = Σij .
Then its MGF will be

MX(t) = et
Tµ+ 1

2 t
TΣt.

Using this, you can show that the linear transformation Z = b + AX follows the MVN(b + Aµ,AΣAT )
distribution.

Example (Normal plus Normal). Here we show that the MGF provides a simple way to see that the
addition of two normal random variables still leads to a normal random variable. Let X,Y be two normal
random variable such that their joint distribution is MVN with mean (µ1, µ2) and covariance matrix Σ.
Consider Z = X + Y . To see why Z is still normal, consider its MGF:

MZ(t) = E(etZ) = E(etX+tY ) = MX,Y (t, t),

which is the MGF of the normal vector (X,Y ) with the argument (t, t). Thus,

MZ(t) = MX,Y (t, t) = et(µ1+µ2)+
1
2 t

2(Σ11+Σ22+2Σ12),

which is the MGF of a normal random variable with mean µ1 + µ2 and variance Σ11 + Σ22 + 2Σ12 =
Var(X) + Var(Y ) + 2Cov(X,Y ).

3.3 Convergence Theory

3.3.1 Convergence in distribution.

Let Z1, · · · , Zn, · · · be a sequence of random variables with CDFs F1, · · · , Fn, · · · . For a random variable Z
with CDF F , we say that Zn converges in distribution (a.k.a. converge weakly or converge in law) to Z
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if

lim
n→∞

Fn(x) = F (x),

for all x where F is continuous.

In this case, we write

Zn
D→ Z, or Zn

d→ Z.

Namely, the CDF’s of the sequence of random variables converge to a the CDF of a fixed random variable.

3.3.2 Convergence in probability.

For a sequence of random variables Z1, · · · , Zn, · · · , we say Zn converges in probability to another random
variable Z if for any ϵ > 0,

lim
n→∞

P (|Zn − Z| > ϵ) = 0

and we will write

Zn
P→ Z

In other words, Zn converges in probability implies that the distribution is concentrating at a targeting
point.

3.3.3 Convergence almost surely.

For a sequence of random variables Z1, · · · , Zn, · · · , we say Zn converges almost surely to a random
variable Z if

P ( lim
n→∞

Zn = Z) = 1

or equivalently,

P ({ω : lim
n→∞

Zn(ω) = Z(ω)}) = 1.

We use the notation

Zn
a.s.→ Z

to denote convergence almost surely.

Note that almost sure convergence implies convergence in probability. Convergence in probability implies
convergence in distribution. In many cases, convergence in probability or almost surely converge occurs
when a sequence of RVs converging toward a fixed number. In this case, we will write (assuming that µ is
the target of convergence)

Zn
P→ µ, Zn

a.s.→ µ.

Examples.

• Let {X1, X2, · · · , } be a sequence of random variables such thatXn ∼ N
(
0, 1 + 1

n

)
. Then Xn converges

in distribution to Z, where Z ∼ N(0, 1).

• Let {X1, X2, · · · } be a sequence of random variables such that Xi ∼ N(0, 1/n). Then Xn
P→ 0, i.e.,

it converges in probability to a random variable Z that takes value 0 with probability 1. Also, the

random variable
√
nXn

D→ N(0, 1).
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• Let {X1, X2, · · · } be a sequence of random variables such that

P (Xn = 0) = 1− 1

n
, P (Xn = 1) =

1

n
.

Then Xn
P→ 0.

• Let {X1, X2, · · · } be a sequence of independent random variables such that

P (Xn = 0) = 1− 1

n
, P (Xn = 1) =

1

n
.

Then Xn
P→ 0 but not almost sure convergence.

Sometimes, one may be thinking that the convergence in probability/distribution may imply convergence in
expectation. But this is not true! Here is an example that it converges in probability to 0 but its expectation
diverges.

Example (diverging expectation but convergence in probability). Consider a sequence of RVs
X1, X2, · · · , such that

P (Xn = 0) = 1− 1

n
, P (Xn = n2) =

1

n
.

Then you can easily verify that Xn
P→ 0. However, if you compute the expectation,

E(Xn) = n → ∞.

So the expectation is in fact diverging. Later we will see that convergence in expectation implies convergence
in probability (follows from Markov’s inequality).

3.3.4 Weak Law of Large Numbers

We write X1, · · · , Xn ∼ F when X1, · · · , Xn are IID (independently, identically distributed) from a CDF F .
In this case, X1, · · · , Xn is called a random sample.

Theorem 3.1 (Markov’s inequality) Let X be a non-negative RV with E(X) < ∞. Then for any ϵ > 0,

P (X ≥ ϵ) ≤ E(X)

ϵ
.

A feature of Markov inequality is that it implies that converges in expectation ⇒ convergence in probability.
Also, Markov’s inequality implies the following useful result, known as Chebyshev’s inequality.

Theorem 3.2 (Chebyshev’s inequality) Let X be a RV with E(X) < ∞ and Var(X) < ∞ Then for any
ϵ > 0,

P (|X − E(X)| ≥ ϵ) ≤ Var(X)

ϵ2
.

The proof of the Chebyshev’s inequality is a direct application of the Markov’s inequality. The Chebyshev’s
inequality shows that for a sequence of random variables with equal mean but a vanishing variance, this
sequence converges in probability to the mean. Applying Chebyshev’s inequality to the sample mean, we
obtain the weak law of large numbers.
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Theorem 3.3 (Weak Law of Large Numbers) Let X1, · · · , Xn
IID∼ F , with µ = E(X1) < ∞ and

Var(X1) = σ2 < ∞. Then the sample average

Xn =
1

n

n∑
i=1

Xi

converges in probability to µ. i.e.,

Xn
P→ µ.

Proof: Using the properties of variance and the fact that X1, . . . , Xn are IID, one can easily show that

Var(Xn) =
σ2

n
.

Thus, by Chebyshev’s inequality

P (|Xn − µ| > t) ≤ σ2

nt2
→ 0,

which completes the proof.

The above theorem is known as the Weak Law of Large Numbers. We can in fact avoid assuming the
existence of a variance but the proof will become much more complicated. Note that a strong law of large
numbers exists. This result states the convergence in terms of an ‘almost sure convergence’.

3.3.5 Central Limit Theorem

Theorem 3.4 (Central Limit Theorem) Let X1, · · · , Xn be IID random variables with µ = E(X1) and
σ2 = Var(X1) < ∞. Let Xn be the sample average. Then

√
n

(
Xn − µ

σ

)
D→ N(0, 1).

Note that N(0, 1) is also called a standard normal random variable.

Proof: Let Z =
√
n(Xn − µ). Proving the theorem is equivalent to showing that Z → N(0, σ2).

Note that we can rewrite Z as

Z =
√
n(Xn − µ) =

1√
n

n∑
i=1

(Xi − µ) =
1√
n

n∑
i=1

Yi,

Thus, the MGF of Z is

MZ(t) = E(etZ) = E
(
e

t√
n

∑n
i=1 Yi

)
= E

(
e

t√
n
Y1
)n

= (E
(
e

t√
n
Y1
)
)n =

(
MY1(t/

√
n)
)n

. (3.1)

Note that above we use the fact that Y1, · · · , Yn are IID random variables. Additionally, note that E(Y1) =
E(X1 − µ) = 0, and E(Y 2

1 ) = E([X1 − µ]2) = Var(X1) = σ2. We use these facts and the Taylor expansion

representation of MY1
(t/

√
n) with the linearity of expectation below. Note that M

(k)
Y1

(0) = E[Y k
1 ], for all k.

MY1
(t/

√
n) =

∞∑
k=0

(t/
√
n)kM

(k)
Y1

(0)

k!
= 1 +

t√
n
E(Y1)︸ ︷︷ ︸

=0

+
t2

2n
E(Y 2

1 )︸ ︷︷ ︸
=σ2

+o

(
1

n

)
.
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The left out Taylor expansion terms are replaced by o( 1n ), which denotes the fact that these terms converge
to 0 faster than 1

n , when n → ∞. Using the above expansion, we can see that

(MY1
(t/

√
n))n

(
1 +

t2σ2

2n
+ o

(
1

n

))n
n→∞→ e

1
2 t

2σ2

.

Plugging this back into Equation (3.1) we obtain

MZ(t) = (MY1
(t/

√
n))n =

(
1 +

t2σ2 + o(1)

2n

)n
n→∞→ e

1
2 t

2σ2

,

which is the MGF of a normal random variable with mean 0 and variance σ2.

Note that there are other versions of the central limit theorem that allow dependent RVs or infinite variance
using the idea of ‘triangular array’ (also known as the Lindeberg-Feller Theorem). However, the details are
beyond the scope of this course so we will not pursue them here.

3.3.6 Other useful theorems

Theorem 3.5 (Continuous mapping theorem) Let g be a continuous function, let X be a random vari-
able and X1, . . . , Xn, . . . be a sequence of random variables.

1. If Xn
D→ X, then g(Xn)

D→ g(X).

2. If Xn
p→ X, then g(Xn)

p→ g(X).

3. If Xn
a.s.→ X, then g(Xn)

a.s.→ g(X).

We will sometimes abuse our notation slightly by writing Yn
p→ c, for Y1, . . . , Yn, . . . a sequence of random

variables and c ∈ R a constant. What we mean by this is that Yn converges to a binary random variable Y
that takes value c with probability 1, and takes any other value with probability 0.

Theorem 3.6 (Slutsky’s theorem.) Let {Xn : n = 1, 2, · · · } and {Yn : n = 1, 2, · · · } be two sequences of

RVs such that Xn
D→ X and Yn

p→ c, where X is a RV c is a constant. Then

Xn + Yn
D→ X + c

XnYn
D→ cX

Xn/Yn
D→ X/c (if c ̸= 0).

We will use Theorems 3.5 and 3.6 in future chapters. Especially in discussions of maximum likelihood
estimators. They will also be important for STAT 513.

Why do we need these notions of convergence? The convergence in probability is related to the concept of
statistical consistency. An estimator is statistically consistent if it converges in probability toward its target
population quantity, this property will become very important later on. The convergence in distribution is
often used to construct confidence intervals or perform a hypothesis tests.
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3.4 Concentration inequalities

In addition to Theorems 3.5 and 3.6, we will often use concentration inequalities to obtain convergence in
probability. Let {Xn : n = 1, 2, · · · } be a sequence of RVs. For a given ϵ > 0, a concentration inequality
aims to compute the function ϕn(ϵ) such that

P (|Xn − E(Xn)| > ϵ) ≤ ϕn(ϵ)

and we have a concentration inequality if ϕn(ϵ)
n→∞→ 0. This automatically gives us convergence in probability

for Xn. Moreover, the convergence rate of ϕn(ϵ) towards 0 with respect to n is a central quantity that
describes how fast Xn converges toward its mean.

Example: concentration of a Gaussian mean. Markov’s inequality implies a useful bound on describing
how fast the sample mean of a Gaussian converges to the population mean. For simplicity, we consider a
sequence of mean 0 Gaussians: X1, · · · , Xn ∼ N(0, σ2). Let Xn = 1

n

∑n
i=1 Xi be the sample mean. It is

known that Xn ∼ N(0, σ2/n). Then

P (Xn > ϵ) = P (eXn > eϵ)

= P (esXn > esϵ), for a positive number s

≤ E(esXn)

esϵ
by Markov’s inequality

= e
1
2nσ2s2−sϵ by the MGF of a Gaussian.

Since we know that our probability is smaller or equal than any value of e
1
2nσ2s2−sϵ, for s > 0, it is also

smaller or equal than its minimum. Since e
1
2nσ2s2−sϵ is a convex function in s, we can find the minimum as

the solution of
∂e

1
2nσ2s2−sϵ

∂s
= 0

. The minimum is reached for s = nϵ
2σ2 Hence,

P (Xn > ϵ) ≤ e−
nϵ2

2σ2 .

Since the distribution of Xn is symmetric around 0, we also have P (Xn < −ϵ) ≤ e−
nϵ2

2σ2 . So we conclude

P (|Xn| > ϵ) ≤ 2e−
nϵ2

2σ2

or more generally,

P (|Xn − E(X1)| > ϵ) ≤ 2e−
nϵ2

2σ2 ,

giving us our first concentration inequality.

Example (concentration of a maximum). Let X1, · · · , Xn be IID normal random variables N(0, σ2).
Define Zn = max{|X1|, · · · , |Xn|}. Intuitively, we know that when n → ∞, Zn should diverge since we are
taking the maximum of more and more values. But, it is possible to find an increasing sequence γn → ∞
such that Zn/γn will not diverge (in probability). How do we find such a sequence γn?

A simple approach is based on the concentration inequality. Using the result from previous example, we
know that for a single random variable Xi (replace n = 1 above), we have

P (|Xi| > ϵ) ≤ 2e−
ϵ2

2σ2 .
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With this, we know that

P (Zn > ϵ) = P (max{|X1|, · · · , |Xn|} > ϵ)

≤
n∑

i=1

P (|Xi| > ϵ) (maximum is over ϵ ⇒ one of them must hold)

≤ 2ne−
ϵ2

2σ2 .

To find the sequence γn, we will replace ϵ with ϵn above. Our goal is to identify a sequence ϵn that would
lead to the following, for some constant 0 < δ < 1,

2ne−
ϵ2n
2σ2

n→∞→ δ

Treating the above
n→∞→ as an equality and solving for ϵn gets us ϵn = σ

√
2 log(2n)− 2 log(δ). Hence, we

need a sequence γn to diverge at the same rate as ϵn. This leads to the choice of γn = σ
√
2 log n, which itself

gives a characterization on how fast Zn diverges.

3.4.1 Concentration of the mean

Let X1, · · · , Xn
IID∼ F be a random sample such that σ2 = Var(X1). Using Chebyshev’s inequality, we know

that the sample average Xn has the following concentration inequality:

P (|Xn − E(Xn)| ≥ ϵ) ≤ σ2

nϵ2
.

When the RVs are bounded, there is a stronger notion of convergence, which we explore in the following
theorem.

Theorem 3.7 (Hoeffding’s inequality) Let X1, · · · , Xn be IID RVs such that a ≤ X1 ≤ b and let Xn be
the sample average. Then for any ϵ > 0,

P (Xn − E(Xn) ≥ ϵ) ≤ e
−2nϵ2

(b−a)2

and

P (|Xn − E(Xn)| ≥ ϵ) ≤ 2e
−2nϵ2

(b−a)2 .

Before proving Hoeffding’s inequality, we first introduce the following lemma:

Lemma 3.8 Let X be a random variable with E(X) = 0 and a ≤ X ≤ b. Then

E(etX) ≤ et
2(b−a)2/8

for any number t ∈ R.

Proof: We will use the fact that x 7→ etx is a convex function for all positive t. Recall that a function g(x)
is a convex function if for any two point a < b and α ∈ [0, 1],

g(αa+ (1− α)b) ≤ αg(a) + (1− α)g(b).
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Because X ∈ [a, b],
X = αXb+ (1− αX)a.

we have that

αX =
X − a

b− a
,

Using the fact that x 7→ etx is convex,

etX ≤ αXetb + (1− αX)eta =
X − a

b− a
etb +

b−X

b− a
eta.

Now taking the expectation of both sides,

E(etX) ≤ E(X)− a

b− a
etb +

b− E(X)

b− a
eta =

b

b− a
eta − a

b− a
etb = eg(s), (3.2)

where s = t(b− a) and g(s) = −γs+ log(1− γ + γes) and γ = −a/(b− a). Note that g(0) = g′(0) = 0 and
g′′(s) ≤ 1/4 for all positive s. Using Taylor’s theorem,

g(s) = g(0) + sg′(0) +
1

2
s2g′′(s∗)

for some s∗ ∈ [0, s]. Thus, we conclude g(s) ≤ 1
2 × s2 × 1

4 = 1
8s

2.

Then equation (3.2) implies

E(etX) ≤ eg(s) ≤ e
s2

8 = e
t2(b−a)2

8 .

Now, we formally prove Hoeffding’s inequality.

Proof:

We first prove that P
(
Xn − µ ≥ ϵ

)
≤ e−2nϵ2/(b−a)2 .

Let Yi = Xi − µ. Because the exponential function is monotonically increasing, for any positive t,

P
(
Xn − µ ≥ ϵ

)
= P

(
Y n ≥ ϵ

)
= P

(
n∑

i=1

Yi ≥ nϵ

)
= P

(
e
∑n

i=1 Yi ≥ enϵ
)

= P
(
et

∑n
i=1 Yi ≥ etnϵ

)
≤ E(et

∑n
i=1 Yi)

etnϵ
by Markov’s inequality

= e−tnϵE(etY1 · etY2 · · · etYn)

= e−tnϵE(etY1) · E(etY2) · · ·E(etYn)

= e−tnϵE(etY1)n

≤ e−tnϵent
2(b−a)2/8 by Lemma 3.8.

Because the above inequality holds for all positive t, we can choose t to optimize the bound. To get the
bound as sharp as possible, we would like to make it as small as possible. Taking derivatives with respect
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to t and set it to be 0, we obtain

t∗ =
4ϵ

(b− a)2

and
−t∗nϵ+ nt2∗(b− a)2/8 = −2nϵ2/(b− a)2.

Thus, the inequality becomes

P
(
Xn − µ ≥ ϵ

)
≤ e−t∗nϵent

2
∗(b−a)2/8 = e−2nϵ2/(b−a)2 .

The same proof also applies to the case P
(
Xn − µ ≤ −ϵ

)
and we will obtain the same bound. Therefore,

we conclude that
P
(
|Xn − µ| ≥ ϵ

)
≤ 2e−2nϵ2/(b−a)2 .

Hoeffding’s inequality gives a concentration of an exponential order (actually it is often called a Gaussian
rate). The convergence rate is much faster than the one given b Chebyshev’s inequality. Obtaining such
an exponential rate is useful for analyzing the property of an estimator. Many modern statistical topics,
such as high-dimensional problems, nonparametric inference, semi-parametric inference, and empirical risk
minimization all rely on a convergence rate of this form. Note that the exponential rate may also be used to
obtain an almost sure convergence via the Borel-Cantelli Lemma (see Section 4 of Billingsley, 2017, as well
as Theorem 22.8 in Section 22.)

Example: consistency of estimating a high-dimensional proportion. To see how the Hoeffding’s
inequality is useful, we consider the problem of estimating the proportion of several binary variables. Suppose
that we observe IID observations

X1, · · · , Xn ∈ {0, 1}d.
Xij = 1 can be interpreted as the i-th individual response ‘Yes’ in j-th question. We are interested in
estimating the proportion vector π ∈ [0, 1]d such that πj = P (Xij = 1) is the proportion of ‘Yes’ response in
j-th question in the population. A simple estimator is the sample proportion π̂ = (π̂1, · · · , π̂d)

T such that

π̂j =
1

n

n∑
i=1

Xij .

When d is much smaller than n, it is easy to see that this is a good estimator. However, if d = dn → ∞ with
n → ∞, will π̂ still be a good estimator of π? To define a good estimator, we mean that every proportion
can be estimated accurately. A simple way to quantify this is the vector max norm:

∥π̂ − π∥max = max
j=1,··· ,d

|π̂j − πj |.

We consider the problem of estimating πj first. It is easy to see that by the Hoeffding’s inequality,

P (|π̂j − πj | > ϵ) ≤ 2e−2nϵ2 .

Thus,

P (∥π̂ − π∥max > ϵ) = P

(
max

j=1,··· ,d
|π̂j − πj | > ϵ

)
≤ P (|π̂1 − π1| > ϵ ∪ |π̂2 − π2| > ϵ ∪ · · · ∪ |π̂d − πd| > ϵ)

≤
d∑

j=1

P (|π̂j − πj | > ϵ)

≤ 2de−2nϵ2 .

(3.3)
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Thus, as long as 2de−2nϵ2 → 0 for any fixed ϵ, we have the statistical consistency. This implies that we need

log d

n
→ 0,

which allows the number of questions/variables to increase a lot faster than the sample size n!
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Lecture 4: Conditional expectation and conditional distribution
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See also Chapter 4 of Perlman (2019) and Chapter 4 of Casella and Berger (2021).

4.1 Recall: conditional distributions

Suppose (X,Y ) is a random vector with joint CDF

FXY (x, y) = P (X ≤ x, Y ≤ y).

In the first lecture, we explained how to obtain the conditional distribution of Y |X = x when both X and
Y are continuous or when both X and Y are discrete.

X,Y continuous: When both variables are continuous, the conditional PDF of Y given X = x is

pY |X(y|x) = pXY (x, y)

pX(x)
,

where pXY (x, y) =
∂2F (x,y)
∂x∂y , and pX(x) =

∫∞
−∞ pXY (x, y)dy.

X,Y discrete: When both X and Y are discrete, the conditional PMF of Y given X = x is

pY |X(y|x) = pXY (x, y)

pX(x)
,

where pXY (x, y) = P (X = x, Y = y), and pX(x) = P (X = x) =
∑

y P (X = x, Y = y).

We now consider the cases when the random vector (X,Y ) is mixed and we still want to compute the
distribution of Y |X = x.

X discrete, Y continuous: Note that the joint CDF FXY (x, y) is still well-defined. That is,

FXY (x, y) = P (X ≤ x, Y ≤ y).

In this case it also makes sense to consider P (X = x, Y ≤ y) as

P (X = x, Y ≤ y) = P (X ≤ x, Y ≤ y)− P (X < x, Y ≤ y) = FXY (x, y)− lim
ϵ↓0

FXY (x− ϵ, y).

Now, we define the joint PDF/PMF pXY (x, y) for (X,Y ) as follows

pXY (x, y) :=
d

dy
P (X = x, Y ≤ y).

Note that := denotes a defining equality. To sum up, we have extend the joint PDF/PMF pXY to a mixed
case where one of the random variables is continuous while the other is discrete. From simplicity, we will
from now on refer to the call pXY as the joint PDF even if one or both X and Y are discrete.

4-1
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We can now define conditional PMF pX|Y (x|y) and conditional PDF pY |X(y|x) as follows.

For a positive PDF pY (y) > 0, the PMF pX|Y (x|y) is defined as:

pX|Y (x|y) :=
pXY (x, y)

pY (y)
.

For a positive PMF pX(x) > 0, the PDF pY |X(y|x) is defined as:

pY |X(y|x) := pXY (x, y)

pX(x)
.

Remark (beyond the scope of this course). Formally, both a PMF and a PDF can be called density
functions in a general sense when using Radon-Nikodym derivatives. Roughly speaking, a density function

p(x) is defined as the ratio p(x) = dP (x)
dµ(x) , where P (x) is a probability measure and µ(x) is another measure.

When µ(x) is the Lebesgue measure, p(x) = dP (x)
dµ(x) is the usual PDF. When µ(x) is the counting measure (as

in the case of discrete variables), p(x) = dP (x)
dµ(x) reduces to the PMF. So both PDF and PMF can be referred

to as density functions (more on this in your measure theory course).

Example (Poisson-Exponential-Gamma). Suppose that we have two R.V.s X and Y such that X is
a discrete random variables, X ∈ {0, 1, 2, 3, · · · }, and Y is a continuous random variables, where Y ≥ 0, The
joint PDF of X and Y is

pXY (x, y) =
λyxe−(λ+1)y

x!
,

λ > 0. Compute the PDFs pX|Y and pY |X .

To compute pX|Y , we first computing pY (y) (Method 1, see Lecture 1). Here

pY (y) =
∑
x

λyxe−(λ+1)y

x!
= λe−(λ+1)y

∑
x

yx

x!︸ ︷︷ ︸
ey

= λe−λy.

So Y ∼ Exp(λ). And thus

pX|Y (x|y) =
pXY (x, y)

pY (y)
=

λyxe−(λ+1)y

x!

λe−λy
=

yxe−y

x!
.

Therefore, X|Y = y ∼ Poisson(y).

Recall, that we can also use Method 2 (the proportional trick from Lecture 1). We know that pX|Y (x|y) will
be a density function, where X is random, and Y = y is not random. So we only need to keep track of how
the function changes w.r.t x and treat y as a constant. This method leads to

pX|Y (x|y) ∝ pXY (x, y) =
λyxe−(λ+1)y

x!
∝ yx

x!
.

From this, we can see that X|Y = y follows a Poisson distribution with rate parameter y.

Let’s use the same trick (Method 2) to compute the conditional distribution pY |X , that is, we keep track of
y and treat x as a constant. Hence,

pY |X(y|x) ∝ pXY (x, y) =
λyxe−(λ+1)y

x!
∝ yxe−(λ+1)y,

which leads us to conclude that Y |X = x follows a Gamma distribution with parameters α = x+1, β = λ+1.
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4.2 Conditional expectations

The conditional expectation of Y given X is the random variable E(Y |X) = g(X) such that when X = x,
its value is

E(Y |X = x) =

{∫
yp(y|x)dy, if Y is continuous,∑
y yp(y|x), if Y is discrete,

where p(y|x) = p(x, y)/p(x) is the PDF/PMF of Y |X = x. Essentially, the conditional expectation is the
expectation of the conditional distribution.

Note that when X and Y are independent,

E(XY ) = E(X)E(Y ), E(X|Y = y) = E(X).

Law of total expectations / Tower rule:

E[E[Y |X]] =

∫
E[Y |X = x]pX(x)dx =

∫ ∫
ypY |X(y|x)pX(x)dxdy

=

∫ ∫
ypXY (x, y)dxdy = E[Y ].

A more general form of this is that for any measurable function g(x, y), we have

E[g(X,Y )] = E[E[g(X,Y )|X]]. (4.1)

There are many cool applications of equation (4.1).

• Suppose g(x, y) = q(x)h(y). Then equation (4.1) implies

E[q(X)h(Y )] = E[E[q(X)h(Y )|X]] = E[q(X)E[h(Y )|X]].

• Let w(X) = E[h(Y )|X]. The covariance

Cov(q(X), h(Y )) = E[q(X)h(Y )]− E[q(X)]E[h(Y )]

= E[E[q(X)h(Y )|X]]− E[q(X)]E[E[h(Y )|X]]

= E[q(X)w(X)]− E[q(X)]E[w(X)]

= Cov(q(X), w(X))

= Cov(q(X),E(h(Y )|X)).

Namely, the covariance between q(X) and h(Y ) is the same as the covariance between q(X) and
w(X) = E[h(Y )|X]. Thus, w(X) = E[h(Y )|X] is sometimes viewed as the projection from h(Y ) onto
the space of X.

Law of total variance:

Var(Y ) = E[Y 2]− E[Y ]2

= E[E(Y 2|X)]− E[E(Y |X)]2 (law of total expectation)

= E[Var(Y |X) + E(Y |X)2]− E[E(Y |X)]2 (definition of variance)

= E[Var(Y |X)] +
{
E[E(Y |X)2]− E[E(Y |X)]2

}
= E [Var(Y |X)] + Var (E[Y | X]) (definition of variance).
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Example (Binomial-uniform). Consider two R.V.s X, Y such that

X|Y ∼ Bin(n, Y ), Y ∼ Unif[0, 1].

We are interested in E[X], Var(X). For the marginal expectation E[X], using the law of total expectation,

E[X] = E[E[X|Y ]] = E[nY ] =
n

2
.

The variance is

Var(X) = E [Var(X|Y )] + Var (E[X | Y ])

= E(nY (1− Y )) + Var(nY )

=
n

2
− n

3
+

n2

12
.

Now we examine the distribution of Y |X. Using the fact that

pY |X(y|x) ∝ pXY (x, y) = pX|Y (x|y)pY (y) =
(
n

x

)
yx(1− y)n−x ∝ yx(1− y)n−x,

we can easily see that this is the PDF of a Beta distribution with parameters α = x+ 1 and β = n− x+ 1.
This is an interesting case because the uniform distribution over [0, 1] is equivalent to Beta(1, 1). And
Y |X ∼ Beta(X + 1, n − X + 1). Thus, initially, Y behaves like Beta(1, 1). Then after observing the data
X, we update the distribution of Y to Y |X ∼ Beta(X + 1, n−X + 1). This is a way of modeling how data
informs our decisions and is used in Bayesian inference.

Example (missing data). Consider a social survey where for each participant we record two variables X
and Y , where X is the age of a participant and Y is their income. We are interested in estimate µ = E[Y ].
We’ll further assume that all participants disclose their age, but not all participants necessarily disclose their
income (we have missing information for some samples of Y ). In this case, we cannot estimate E[Y ] without
making additional assumptions.

We’ll use a binary variable R to denote the presence/missingness of information on Y . When R = 1, we
measure both X and Y . When R = 0, we only measure X. We will now make the following assumption that
will later enable us to estimate E[Y ]. We will assume that R ⊥ Y |X (this is a special case of the so-called
missing at random assumption). Under this assumption, the response probability P (R = 1|X,Y ) = π(X)
only depends on X and we will additionally assume that π(X) is a known function.

Now consider the quantity:

W =
RY

π(X)
.

Interestingly, W can always be computed–when R = 1, W = Y
π(X) and when R = 0, W = 0. A more

interesting fact is that W has the same mean as Y :

E[W ] = E
[

RY

π(X)

]
= E

[
1

π(X)
E[RY |X]

]
= E

[
1

π(X)
E[R|X]E[Y |X]

]
= E

[
1

π(X)
π(X)E[Y |X]

]
= E[E[Y |X]] = E[Y ].
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Hence, suppose we observe many IID random copies of (X,R = 1, Y ) or (X,R = 0), we estimate µ = E[Y ]
using the mean of the empirical CDF (see below)

µ̂ =
1

n

n∑
i=1

RiYi

π(Xi)
.

The quantity W is also called the IPW (inverse probability weighed) estimator.

4.3 Empirical Distribution Function

We now briefly introduce the empirical cumulative distribution function (ECDF, or EDF), an estimator of
the cumulative distribution function (CDF).

Let first look at the CDF F (x) more closely. Given a value x0,

F (x0) = P (Xi ≤ x0)

for every i = 1, · · · , n. Namely, F (x0) is the probability of the event {Xi ≤ x0}.

A natural estimator of a probability of an event is the ratio of such an event in our sample. Thus, we use

F̂n(x0) =
number of Xi ≤ x0

total number of observations
=

∑n
i=1 I(Xi ≤ x0)

n
=

1

n

n∑
i=1

I(Xi ≤ x0) (4.2)

as the estimator of F (x0).

For every x0, we can use such a quantity as an estimator, so the estimator of the CDF, F (x), is F̂n(x). This
estimator, F̂n(x), is called the empirical distribution function (EDF).

Example. Here is an example of the EDF of 5 observations of 1, 1.2, 1.5, 2, 2.5:

1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(x)

x

F
n(

x)

There are 5 jumps, each located at the position of an observation. Moreover, the height of each jump is the
same: 1

5 .

Example. While the previous example might not be look like an idealized CDF, the following provides a
case of EDF versus CDF where we generate n = 100, 1000 random points from the standard normal N(0, 1):
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x

F
n(

x)

The red curve indicates the true CDF of the standard normal. Here you can see that when the sample size
is large, the EDF is pretty close to the true CDF.

4.3.1 Properties of the EDF

Because EDF is the average of I(Xi ≤ x), we now study the property of I(Xi ≤ x) first. For simplicity, let
Yi = I(Xi ≤ x). What is the random variable Yi?

Here is the breakdown of Yi:

Yi =

{
1, if Xi ≤ x

0, if Xi > x
.

So Yi only takes value 0 and 1–so it is actually a Bernoulli random variable! We know that a Bernoulli
random variable has a parameter p that determines the probability of outputing 1. What is the parameter
p for Yi?

p = P (Yi = 1) = P (Xi ≤ x) = F (x).

Therefore, for a given x,
Yi ∼ Ber(F (x)).

This implies

E(I(Xi ≤ x)) = E(Yi) = F (x)

Var(I(Xi ≤ x)) = Var(Yi) = F (x)(1− F (x))
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for a given x.

Now what about F̂n(x)? Recall that F̂n(x) =
1
n

∑n
i=1 I(Xi ≤ x) = 1

n

∑n
i=1 Yi. Then

E
(
F̂n(x)

)
= E(I(X1 ≤ x)) = F (x)

Var
(
F̂n(x)

)
=

∑n
i=1 Var(Yi)

n2
=

F (x)(1− F (x))

n
.

What does this tell us about using F̂n(x) as an estimator of F (x)?

First, at each x, F̂n(x) is an unbiased estimator of F (x):

bias
(
F̂n(x)

)
= E

(
F̂n(x)

)
− F (x) = 0.

Second, the variance converges to 0 when n → ∞. This implies that for a given x,

F̂n(x)
P→ F (x).

i.e., F̂n(x) is a consistent estimator of F (x).

The EDF is a good approximator of the CDF in many ways. As functionals of the EDF can be computed
directly from data, they will often serve as plug-in estimators for functionals of the CDF. For instance,
the first moment of the EDF is the empirical mean:

En(X) = µ̂n =
1

n

n∑
i=1

xi

This empirical mean will often be used as an estimator of E[X], see example above.

Example (survey sampling). Suppose a city government is planning to estimate the average income for
a city resident. We assume that the city has three districts: A and B and C. 60% of population lives in
district A, 30% of population lives in district B, and the remaining 10% of the population lives in district
C. For each resident, we record two variables X and Y , where X ∈ {A,B,C} is the indicator of the district
the resident lives in and Y is their income.

The average income for a resident of our city is then

µ = EY [Y ] = EX [EY [Y |X]] = 0.6 · EY [Y |X = A] + 0.3 · EY [Y |X = B] + 0.1 · EY [Y |X = C].

However, when the government conducted the survey, they surveyed the same amount of individuals in each
district. Our proportions are miss-aligned! So while for a random resident the probability that they live in
district C is 1/10, the probability of living in district C for a person in our sample is 1/3. So for our sample,
P (X = A) = P (X = B) = P (X = C) = 1

3 .

In this case, how should we construct a quantity Z = g(X,Y ) such that E[Z] = µ?

It turns out that we can use importance weighting (a similar idea to the inverse probability weighting above)
to construct such Z = g(X,Y ). Consider

Z =
0.6

1/3
I(X = A)Y +

0.3

1/3
I(X = B)Y +

0.1

1/3
I(X = C)Y

= 1.8I(X = A)Y + 0.9I(X = B)Y + 0.3I(X = C)Y.
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Namely, when we observe a person from district A, instead of assigning them a weight of 1, we count this
person as 1.8 individuals. When we observe a person from district C, we assign this person a weight of 0.3
individuals. Then you can easily verify that

E[Z] = E[E[Z|X]]

= 1.8E[I(X = A)]E[Y |X = A] + 0.9E[I(X = B)]E[Y |X = B] + 0.3E[I(X = C)]E[Y |X = C]

= 0.6E[Y |X = A] + 0.3E[Y |X = B] + 0.1E[Y |X = C]

= µ.
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Additional reading: Chapter 5 of Perlman (2019) and parts of Chapter 11 Casella and Berger (2021).

5.1 Correlation

Pearson’s correlation, or simply correlation, is a common measure of association between the two random
variables. Formally, for random variables X and Y , their correlation is

ρXY = Cor(X,Y ) =
Cov(X,Y )√
Var(X)Var(Y )

.

It has three nice properties:

1) (Symmetric property:) Cor(X,Y ) = Cor(Y,X).

2) (Location-scale property:) Cor(aX + b, cY + d) = sign(ac)Cor(X,Y ).

3) (Bounded and colinearity property:) −1 ≤ Cor(X,Y ) ≤ 1. Cor(X,Y ) = ±1 if and only if they are
perfectly linear, i.e., X = aY + b for some constant a, b.

Proof of 3): Let U = X − E[X], V = Y − E[Y ], and g(t) = E[(tU + V )2]. Then

g(t) = E[(tU + V )2] = t2E[U2] + 2tE[UV ] + E[V 2].

Since, (tU + V )2 will be non-negative for all values of t, it holds that g(t) = E[(tU + V )2] ≥ 0. That is,

t2E[U2] + 2tE[UV ] + E[V 2] ≥ 0 (5.1)

If we view g(t) as a quadratic function of t, then equation (5.1) implies that the discriminant of g(t) = 0
must be smaller or equal to zero (Recall that the discriminant for a quadratic equation a2x2 + bx+ c = 0 is
b2 − 4ac.) Hence,

4(E[UV ])2 − 4E[U2]E[V 2] ≤ 0

(E[UV ])2 ≤ E[U2]E[V 2], (5.2)

where equation (5.2) is known as the Cauchy-Schwartz inequality. Replacing U = X −E[X], V = Y −E[Y ],
and g(t) = E[(tU + V )2], above we obtain:

(Cov(X,Y ))2 ≤ Var(X)Var(Y ),

which gives us that ρ2XY ≤ 1.

Note that equality in equation (5.2) holds if and only if the discriminant of g(t) = 0 is exactly zero, that
is if there is a t0 ∈ R, such that g(t0) = 0. Since g(t0) = E[(t0U + V )2], for g(t0) = 0, we need to have

5-1
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t0U + V ≡ 0, for all values of U, and V. So V must exactly be a linear function of U, i.e. Y needs to be
exactly a linear (affine) function of X.

You can think of correlation as a measure of the linear relationship between two random variables. A large
correlation implies a strong linear relationship. However, a low correlation does not imply the two random
variables are not related with each other!

Example (0 correlation but perfectly related). Consider a random variable X take three possible
values −1, 0, 1 with a probability P (X = −1) = P (X = 1) = 1/4 and P (X = 0) = 1/2. Let Y = X2. You
can see that X and Y are deterministically related. It is easy to see that E[X] = 0 and E[XY ] = 0 and
Var(X),Var(Y ) > 0. However, the covariance between them will be

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = 0− 0 = 0,

which implies that Cor(X,Y ) = 0. So they are uncorrelated but perfectly related with each other.

5.2 Mean-squared error prediction

A classical problem in statistics is how to use data on random variable X to predict the value of random
variable Y . This is known as a prediction problem. Thus, our goal us is to find some function of X, g(X)
that approximates Y well in some respect. To measure how close g(x) is to some y, we use a loss function
L(g(x), y). One common loss function is a squared loss which equals:

L(g(x), y) = (g(x)− y)2

To measure how close g(X) is to Y overall we take the expectation over the loss function, E[L(g(X), Y )].
This is known as the risk function R(g) = E[L(g(X), Y )]. The risk function for a squared loss, is also known
as the mean-squared error (MSE):

R(g) = E((Y − g(X))2).

Namely, the MSE is the expected squared deviation of our predictor g(X) to the target Y .

Ideally, we want to choose g that minimizes R(g). Formally, we want to find

g∗ = argmingR(g).

We now take a deeper look at the MSE R(g) = E((Y − g(X))2). Using the law of total expectation,

E((Y − g(X))2) = E[E[(Y − g(X))2|X]].

Using the fact that for any fixed constant c,

E[(Y − c)2] = E[(Y − E[Y ] + E[Y ]− c)2] = E[(Y − E[Y ])2] + (E[Y ]− c)2 = Var(Y ) + (E[Y ]− c)2,

we can rewrite the MSE as

R(g) = E[E[(Y − g(X))2|X]] = E[Var(Y |X) + (E[Y |X]− g(X))2] = E[Var(Y |X)] + E[(E[Y |X]− g(X))2].

The first quantity is independent of g so it does not matter in the selection of g. The second quantity involves

(E[Y |X]− g(X))2 ≥ 0.



Lecture 5: Correlation, prediction, and regression 5-3

The only case that the equality holds is g(X) = E[Y |X]. As a result, to minimize the MSE, we should use
the conditional expectation E[Y |X] as our predictor. The conditional expectation E[Y |X = x] = m(x) is
also known as the regression function or the best predictor.

With the regression function, we can decompose Y as

Y = E[Y |X]︸ ︷︷ ︸
best predictor

+(Y − E[Y |X])︸ ︷︷ ︸
residual

. (5.3)

That is for g∗(X) = E[Y |X],
Y = g∗(X) + Y − g∗(X).

Here are some interesting properties of the decomposition in equation (5.3):

• Unbiased. E[best predictor] = E[g∗(X)] = E[E[Y |X]] = E[Y ] and E[residual] = E[Y − g∗(X)] = 0.

• Uncorrelated. Cov(g∗(X), Y − g∗(X)) = Cov(E[Y |X], Y − E[Y |X]) = 0.

• Residual variance. Var(Y − g∗(X)) = Var(Y − E[Y |X]) = E[Var(Y |X)]. To see this,

Var(Y − g∗(X)) = Var(Y − E[Y |X]) = Var(Y )− 2Cov(Y,E[Y |X]) + Var(E[Y |X])

= E[Y 2]− E[Y ]2 − 2(E[Y E[Y |X]]− E[Y ]E[E[Y |X]]) + E[E[Y |X]2]− E[E[Y |X]]2

= E[Y 2]− E[Y ]2 − 2E[E[Y |X]2] + 2E[Y ]2 + E[E[Y |X]2]− E[Y ]2

= E[Y 2]− E[E[Y |X]2]

= E[E[Y 2|X]− E[Y |X]2]

= E[Var(Y |X)].

Note also that,

Var(Y − g∗(X)) = E[(Y − g∗(X))2]− [E[Y − g∗(X)]]2 = R(g∗).

• Variance decomposition. Using the law of total variance we obtain:

Var(Y ) = Var(E[Y |X]) + E[Var(Y |X)].

in our case this decomposition can also be interpreted as:

Var(Y ) = Var(g∗(X)) +R(g∗).

5.3 Linear prediction (linear regression)

In the above analysis, we see that the best predictor is E[Y |X]. However, E[Y |X] does not present any
restrictions on the functional form of g(x). This unrestricted set of options is often too rich for a straight-
forward statistical analysis. So generally, we may choose to restrict ourselves to some set of simple functions
g(x). One canonical example is the set of all linear functions. Namely, suppose we want to find constants
α, β such that for g(x) = α+ βx, the MSE is minimized. That is, we want to minimize:

R(α, β) = E((Y − α− βX)2)

This way of choosing g(x) is also known as the least squares approach. We
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How do we find the best values of α and β? To solve this problem, we first expand R(α, β):

R(α, β) = E((Y − α− βX)2)

= E(Y 2 + α2 + β2X2 − 2Y α− 2XY β + 2αβX)

= E[Y 2] + α2 + β2E[X2]− 2αE[Y ]− 2βE[XY ] + 2αβE[X],

which is a quadratic function of α, β. Additionally, note that R(α, β) = E((Y − α − βX)2) ≥ 0, must be a
convex function of α, β. Thus, we want to find α∗, β∗ such that

α∗, β∗ = argminα,βR(α, β)

Since R(α, β) is convex, this amounts to solving the following system of gradient equations (known as the
first order equations):

0 =
∂

∂α
R(α∗, β∗)

= 2α∗ − 2E[Y ] + 2β∗E[X]

0 =
∂

∂β
R(α∗, β∗)

= 2β∗E[X2]− 2E[XY ] + 2α∗E[X]

⇒ β∗Var(X) = Cov(X,Y )

⇒ β∗ =
Cov(X,Y )

Var(X)

⇒ α∗ = E[Y ]− E[X]β∗.

With these, the best linear predictor (BLP) is

m∗(x) = α∗ + β∗x

= E[Y ] +
Cov(X,Y )

Var(X)
(x− E[X])

= µY + ρXY
σY

σX
(x− µX),

where µX = E[X], µY = E[Y ], σ2
X = Var(X), σ2

Y = Var(Y ) and ρXY is the Pearson’s correlation.

Interestingly, the MSE under the best linear predictor will be

R(α∗, β∗) = E((Y − α∗ − β∗X)2)

= E[(Y − µY − ρXY
σY

σX
(X − µX))2]

= σ2
Y − 2ρXY

σY

σX
E[(Y − µY )(X − µX)] + ρ2XY

σ2
Y

σ2
X

σ2
X

= σ2
Y (1− ρ2XY ).

An important feature of the above analysis is that we did NOT assume the linear model to be correct! We
can always find a best linear predictor regardless of what the true regression function looks like.

5.3.1 Multivariate linear prediction

Suppose that the covariate X = (X1, · · · , Xp) is now multivariate. The linear prediction approach still works
and the MSE will be

R(α, β) = E((Y − α− β1X1 − β2X2 − · · · − βpXp)
2),
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where β = (β1, · · · , βp)
T ∈ Rp. Let Z = (1, X1, · · · , Xp)

T ∈ Rp+1 be a data vector and γ = (α, β1, · · · , βp)
T ∈

Rp+1 be a coefficient vector. Then the MSE has an elegant form:

R(γ) = R(α, β) = E((Y − γTZ)2).

A direct expansion shows that

R(γ) = E(Y TY )− 2E[Y ZT γ] + E[γTZZT γ]

= E(Y TY )− 2γTE[ZY ] + γTE[ZZT ]γ,

which is a quadratic function of γ.

Differentiating this with respect to the coefficient vector γ leads to

0 = −2E[ZY ] + 2E[ZZT ]γ.

Thus, the least squares solution will be

γ∗ = (E[ZZT ])−1E[ZY ].

Note that E[ZZT ] is a matrix and (E[ZZT ])−1 is the matrix inverse.

With γ∗ = (α∗, β∗)T , we can easily write down the BLP:

m∗(x) = γ∗T z = α∗ + β∗Tx = α∗ +

p∑
j=1

β∗
j xj .

5.3.2 Correctness of the model

In linear prediction, we did NOT assume the linear model to be correct. In the case of the linear model being
correct, we have some really nice properties. We use the notation from the multivariate case for simplicity.

When the linear model is incorrect. The coefficient from the least squares approach is γ∗ = E[ZZT ]−1E[ZY ].
In general, this quantity will change if the distribution of the covariates X (Z) changes. So the coefficient
depends on the distribution of the covariates.

When the linear model is correct. Suppose that the linear model is correct, i.e., Y = γ̄TZ + ϵ for some
γ̄ ∈ Rp+1, and ϵ is a noise such that ϵ ⊥ Z and E[ϵ|Z] = 0.

Then the coefficient that minimizes the MSE will be

γ∗ = E[ZZT ]−1E[ZY ]

= E[ZZT ]−1E[Z(γ̄TZ + ϵ)]

= E[ZZT ]−1E[Z(ZT γ̄ + E[ϵ|Z])]

= E[ZZT ]−1E[ZZT γ̄]

= γ̄.

Thus, the least squares coefficient is the same as the true coefficient. This also implies that the least squares
coefficient will be invariant to the distribution of the covariates when the linear model is correct.
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5.4 Prediction of categorical outcomes: classification

All computations above were done with the understanding that we are relying on quadratic loss. We could
have also chosen a different loss function. For instance, if you are interested in robust statistics (topic for
another course) you may be interested in computing the risk under the Huber loss function, which for some
δ > 0 takes the following form:

Lδ(y, g(x)) =

{
1
2 (y − g(x))2 for |y − g(x)| ≤ δ,

δ ·
(
|y − g(x)| − 1

2δ
)
, otherwise.

The Huber Loss has a quadratic form close to 0 and is otherwise linear. It’s used for regression tasks that
may have some outliers present in the data.

One other reason why you may consider a different loss function than the quadratic loss is if you response
variable is discrete. In particular, the prediction problems where the response variable is categorical are
known as classification problems.

Some examples of classification problems are below:

• Email spam. Deciding whether an email is spam or not, based on the email text and/or title.

• Sentiment analysis. Deciding whether a review is positive or negative, based on the text of the
review.

• Image classification. Classifying pictures of animals by species, for instance. (Many categories for
Y in this case.)

We’ll consider the simple scenario – when Y is binary, known as binary classification. We will denote the
two classes of Y by 0 and 1.

Our goal is to construct a classifier c(X) based on our knowledge of random variable X, that does a “good
job” at approximating Y . To decide how well we are doing at approximating Y , we need to define a loss
function.

Since Y is binary, we may want to minimize the classification error, that is our loss could be

L(c(x), y) = 1(y ̸= c(x)).

This loss function is known as the 0-1 loss, because L(c(x), y) = 1 if our classification is wrong, and
L(c(x), y) = 0, if our classification is correct.

How do we find the classifier c: we will minimize the risk function as before. The risk of a classifier c is

R(c) = E(L(c(X), Y )).

Suppose that we know the distribution P (y|x). An intuitive choice for a classifier c is then as follows:

c∗(x) = argmaxy=0,1P (y|x) =

{
0, if P (0|x) ≥ P (1|x),
1, if P (1|x) > P (0|x).

(5.4)

Namely, we predict the response (sometimes called label in classification) as the category with the highest
conditional probability. This particular classifier is known as the Bayes classifier.
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Is this classifier good in the sense of the classification error (risk)? In fact, yes! This is the optimal classifier
(best predictor) for the 0− 1 loss, that is, R(c∗) = minc R(c).

Derivation. Given a classifier c, the risk function R(c) = E(L(c(X), Y )). Using tower property, we can
further write it as

R(c) = E(L(c(X), Y )) = E(E(L(c(X), Y )|X)︸ ︷︷ ︸
(A)

).

For the quantity (A), we have

E(L(c(X), Y )|X) = L(c(X), 1)p(Y = 1|X) + L(c(X), 0)p(Y = 0|X)

= 1(c(X) ̸= 1)p(Y = 1|X) + 1(c(X) ̸= 0)p(Y = 0|X)

=

{
p(Y = 1|X) if c(X) = 0

p(Y = 0|X) if c(X) = 1.

The optimal classifier should predict c(X) = 0 if P (Y = 1|X) ≤ P (Y = 0|X) and c(X) = 1 if P (Y = 1|X) >
P (Y = 0|X), which is exactly what the Bayes classifier does.

Figure 5.1: Figure from ISLR2.
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Note that our classifier c∗, depended on us knowing the distribution P (y|x). What happens if we do not
know this distribution? In these cases, we will obtain a classifier through some estimation procedure (for

instance we may try to maximize P̂ (y|x) using maximum likelihood estimation, see next chapter). Such a
classifier will necessarily have a larger (or equal) risk compared to the Bayes classifier. For such a classifier
c, we define its excess risk (regret) as

E(c) = R(c)−min
c

R(c).

The excess risk is a quantity that measures how much c compares to the optimal/Bayes classifier. If we
cannot compute the optimal classifier, we will at least try to find a classifier whose excess risk is small.
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In statistics, we often encounter a problem where we observe a sequence of random variables (data)X1, · · · , Xn

that represent random sample from a population and we wish to use this data to estimate some characteristics
of the population.

For instance, we may assume that X1, · · · , Xn are IID random variables from an unknown PDF p, and our
goal is to estimate some parameters of p.

To make our lives easier, we may assume that p belongs to some parametric family of distributions (for
instance the exponential family, see below). That is, p(x) = p(x; θ), where θ are some distribution parameters.
In this case, we say that we are using a parametric model. For instance, if the population is normally
distributed N (µ, σ2), then θ = (µ, σ2) consists of the mean and variance parameters.

An estimator is a statistic, that is a function of the data, g(X1, · · · , Xn) that approximates θ in some way1.
In this lecture, we discuss some popular approaches to finding a good estimator.

6.1 Detour: Exponential Family

One parametric family that will make a lot of appearances in STAT 513 is the exponential family of distri-
butions.

Definition 6.1 A parametric family of univariate distributions is said to belong to an exponential family
of distributions if and only if the probability density function (or probability mass function in the case of
discrete distributions) of any member of the family can be written as

pX(x; θ) = h(x) exp
[ L∑
i=1

ηi(θ)Ti(x)−A(θ)
]
,

where:

• h : R → R+, is a function that only depends on x,

• θ is a K × 1 vector of parameters;

• η = (η1, . . . ηL)
T , for i ∈ {1, . . . , L}, L ≥ K, and ηi : RK → R is a function of the vector of parameters

θ;

• T = (T1, . . . TL)
T , for i ∈ {1, . . . , L}, L ≥ K, and Ti : RK → R is a function of x;

• η(θ)TT (x) is the dot product between η and T ;

1The concept of estimator can be generalized to other parameters of interest, not necessarily a parameter in a parametric
model. For instance, we may be interested in the median of a distribution - which is a parameter of the distribution - but we
may not want to assume that the the distribution is Gaussian. See lecture 10.

6-1
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• A : RK → R is a function of θ.

Example. (Normal is part of the exponential family) Note that for X ∼ N (µ, σ2) and θ = (µ, σ2),
the PDF of X is

pX(x;µ, σ2) =
1√
2πσ2

exp
[
− (x− µ)2

2σ2

]
=

1√
2π

exp
[
log

1

|σ|
]
exp

[
− (x− µ)2

2σ2

]
=

1√
2π

exp

[(
− log |σ| − (x− µ)2

2σ2

)]
=

1√
2π

exp

[(
− log |σ| − µ2

2σ2
− x2 − 2µx

2σ2

)]
=

1√
2π

exp

[(
− log |σ| − µ2

2σ2
+

−x2

2σ2
+

2µx

2σ2

)]

We can notice above, that we can choose the following functions for h,A, T, and η.

• h(x) = 1/
√
2π,

• A(µ, σ2) = log |σ|+ µ2

2σ2 , and

• η1(µ, σ
2)T1(x) =

−x2

2σ2 , that is η1(µ, σ
2) = −1

2σ2 , and T1(x) = x2.

• η2(µ, σ
2)T2(x) =

2µx
2σ2 , that is η2(µ, σ

2) = µ
σ2 , and T2(x) = x.

Hence, the Normal distribution belongs to the exponential family.

Aside: A distribution belonging to the exponential family is said to be flat, if K = L, and curved if K < L.
Example of a curved distribution in the exponential family is N (θ, θ2).

6.2 Method of Moments

The method of moments is a simple but powerful approach to finding an estimator. The idea is as follows.
For a parametric model p(x; θ), its moments are determined by the underlying parameter θ. For instance,
the first moment is

m1(θ) = E[X] =

∫
xp(x; θ)dx

and the second moment is

m2(θ) = E[X2] =

∫
x2p(x; θ)dx

Suppose that we have k parameters in the model, i.e., θ = (θ1, . . . , θk)
T ∈ Rk. Then we can use the first k

moments to express θ1, . . . , θk, i.e.,

mj(θ1, . . . , θk) =

∫
xjp(x; θ1, . . . , θk)dx,
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for j = 1, 2, 3, · · · , k.

So for instance, in the case of a normal distribution N (µ, σ2), θ = (µ, σ2)T , we have that

m1(θ) = E[X] = µ, and

m2(θ) = E[X2] = Var(X) + (E[X])2 = σ2 + µ2.

How do we use this in estimation? Recall that the EDF F̂n(x) =
1
n

∑n
i=1 I(Xi ≤ x) is a good estimator of

the true CDF F (Lecture notes 4). So if we want to estimate a population quantity θ that is a function of

F , θ = Ttarget(F ), we can use Ttarget(F̂n) = θ̂n as our estimator. Method of moments exploits exactly this
connection. Thus:

m̂j(θ) =
1

n

n∑
i=1

Xj
i

for each j = 1, 2, 3, · · · . We obtain the estimator for θ, by finding θ̂ that solves the following system of
equations:

m̂1(θ) =
1

n

n∑
i=1

Xi

m̂2(θ) =
1

n

n∑
i=1

X2
i

...
...

m̂k(θ) =
1

n

n∑
i=1

Xk
i .

The resulting quantity θ̂MoM is called the method of moments estimator.

Example: Normal distribution. Consider X1, · · · , Xn
IID∼ N (µ, σ2). We want to estimate θ = (µ, σ2)T .

Since we have two parameters we want to estimate, we use the first two moment equations. That is,

m1(µ, σ
2) = µ, m2(µ, σ

2) = µ2 + σ2.

Thus, we immediately have

µ̂ = m̂1(µ̂, σ̂
2) =

1

n

n∑
i=1

Xi

and

µ̂2 + σ̂2 = m̂2(µ̂, σ̂
2) =

1

n

n∑
i=1

X2
i ,

which leads to

σ̂2 =
1

n

n∑
i=1

(Xi − µ̂)2.

Example: Uniform distribution. Suppose that X1, · · · , Xn
IID∼ Uniform[0, θ]. We want to estimate θ.

By the method of moments:

θ̂/2 = m̂1(θ) =
1

n

n∑
i=1

Xi
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so θ̂MoM = 2
n

∑n
i=1 Xi.

Example: Exponential distribution. Consider the case where we use the exponential distribution to
model X1, · · · , Xn. Since p(x;λ) = λe−λxI(x ≥ 0), we have

m1(λ) =
1

λ
.

As a result,

1/λ̂ = m̂1(λ̂) =
1

n

n∑
i=1

Xi,

λ̂MoM =
n∑n

i=1 Xi
.

6.3 Maximum likelihood estimators

Another popular estimation procedure is the maximum likelihood estimation. For this procedure, we again
assume that our random variables of interest belong to a certain parametric model. That is, the PDF/PMF
can be written as p(x) = p(x; θ), where θ ∈ Θ, for some parameter space Θ.

The idea behind maximum likelihood estimation, is to treat each observation of a random variable as having
a certain likelihood of being drawn that depends on θ. Then ask, given this observation X, which θ is the
most likely parameter to have generated it? To answer this question, we can vary θ and examine the value
of p(X; θ).

Because we are treating X as fixed and θ as a variable we want to optimize, we can view the problem
as finding the best θ such that the likelihood function L(θ|X) = p(X; θ) is maximized. The maximum
likelihood estimator (MLE), will be the θ that leads to maxθ L(θ|X). Namely,

θ̂MLE = argmaxθL(θ|X).

When we assume we have observations of n random variables X1, · · · , Xn (n samples), the likelihood function
will be

Ln(θ) = L(θ|X1, · · · , Xn) = p(X1, · · · , Xn; θ).

If we further assume that our variables are IID, we can further decompose the likelihood,

Ln(θ) =

n∏
i=1

L(θ|Xi) =

n∏
i=1

p(Xi; θ).

For most (if not all) problems in this course, we will assume that our n random variables are IID.

As finding the maximum of a product is both numerically and analytically complicated, we consider a
monotonic transformation that preserves the argmax while making the problem easier to analyze. That is,
instead analyzing the likelihood function, we will analyze the log-likelihood function

ℓn(θ) = logLn(θ) =

n∑
i=1

log p(Xi; θ).

Under the IID assumption, each log p(Xi; θ) is an IID random variable. So we can make use of the central
limit theorem and the law of large numbers, making it possible to analyze it asymptotic behavior.
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Now, to find the extremum of the log-likelihood function above, we study the first derivative of this function,
also known as the gradient, or the score function.

Sn(θ) =
∂

∂θ
ℓn(θ) =

n∑
i=1

s(θ|Xi),

where s(θ|Xi) =
∂
∂θ ℓ(θ|Xi) =

∂
∂θ log p(Xi; θ). The extrema points (either maximums or minimums) of the

likelihood function, can be find as the solution to the following score equation:

Sn(θ̂
∗) = 0.

Note that θ ∈ Rp, the score equation will become a system of p equations. These equations are also known
as the likelihood equations. Under suitable conditions, θ∗ ≡ θ̂MLE .

For θ∗ to be the maximum of the likelihood function, we need the log-likelihood function to be log-concave.
Hence, we may consider the second derivative of the log-likelihood at θ = θ∗. If this derivative is negative,
we have found the maximum, that is θ∗ ≡ θ̂MLE . In the case, of θ ∈ Rp, we consider the Hessian of the log-
likelihood for θ = θ∗ and show it’s negative definite. Conveniently, most common probability distributions
– in particular the exponential family – is log-concave.

The second derivative of the score function around θ∗, will also give us some information about the stability
of our found maximum. This will further allow us to study the variance of our estimator θ̂MLE . We first
define some important notation.

Definition 6.2 (Fisher information) Fisher information for a single observation of a random variable
X1 and θ ∈ R is defined as

I1(θ) = E
[(

∂ℓ1(θ)

∂θ

)2]
.

For n samples of IID random variables X1, . . . , Xn, the Fisher information is

I(θ) = nI1(θ).

If θ = (θ1, . . . , θp) ∈ Rp, then I1(θ) and I(θ) become Fisher information matrices with i, j-th elements
equal to

[I1(θ)]i,j = E
[(

∂ℓ1(θ)

∂θi

)(
∂ℓ1(θ)

∂θj

)]
and [I(θ)]i,j = n[I1(θ)]i,j .

Theorem 6.3 Under some regularity conditions, for θ ∈ R, the following holds:

E
(
∂ℓ1(θ)

∂θ

)
= 0, therefore, I1(θ) = Var

(
∂ℓ1(θ)

∂θ

)
.

By above, the Fisher information will be the variance of the score.

Theorem 6.4 The Fisher information for a single observation of a random variable X1 can be derived from
the second derivative, that is for θ ∈ R

I1(θ) = −E
(
∂2ℓ1(θ)

∂2θ

)
,

or for θ ∈ Rp

[I1(θ)]i,j = −E
(
∂2ℓ1(θ)

∂θi∂θj

)
.
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Suppose for simplicity that θ ∈ R. By applying the CLT, one can show

√
n
(
θ̂MLE − θ0

)
D→ N(0, I−1

1 (θ0)),

where θ0 is the true population value of θ. Namely, the MLE is asymptotically normally distributed around
the true parameter θ0, and the covariance is determined by the Fisher information matrix. Note that the

asymptotic normality also implies that θ̂MLE − θ0
P→ 0.

We now introduce a very important result, that will be explored deeper in STAT 513:

Theorem 6.5 (Cramér-Rao Lower Bound) Let X1, . . . , Xn be IID random variables each with PDF/PMF

pX1;θ and supposed θ̂ is an unbiased estimator for θ0, that is E[θ̂] = θ0. Then

Var(θ̂) ≥ 1

I(θ0)
=

1

nI1(θ0)
.

An estimator is said to be efficient if it reaches the Cramér-Rao lower bound. We can conclude from above
that this will be true for an MLE (under the correct parametric model assumption). Hence, one reason for
its popularity.

Example 1: Binomial Distribution. Assume that we obtain a single observation Y ∼ Bin(N, p), and we
assume that N is known. The goal is to estimate p. The log-likelihood function is

ℓ(p) = Y log p+ (N − Y ) log(1− p) + CN (Y ),

where CN (Y ) = log
(
N
Y

)
is independent of p. The score function is

S(p) =
Y

p
− N − Y

1− p

so solving S(p) = 0 gives us p̂MLE = Y
N . Moreover, the Fisher information is

I(p) = −E
{

∂

∂p
S(p)

}
= +

E(Y )

p2
+

N − E(Y )

(1− p)2
=

N

p(1− p)
.

Example 2: Poisson Distribution. Suppose we observe two integer RVs X1, X2. We assume that they
are independently from Poisson distribution with unknown parameter λ. What will be the MLE of λ? In
this case, the joint PDF is

p(x1, x2;λ) =
λx1

x1!
e−λλ

x2

x2!
e−λ.

Thus, the log-likelihood function will be

ℓ(λ|X1, X2) = (X1 +X2) log λ− 2λ− log(X1!)− log(X2!)

so the score function is

S(λ|X1, X2) =
X1 +X2

λ
− 2.

This leads to the MLE:

λ̂ =
1

2
(X1 +X2).

Example 3: Uniform Distribution. Consider X1, · · · , Xn
IID∼ Unif[0, θ]. What will be the MLE of θ?

Recall that the PDF will be

p(x1, · · · , xn) =

n∏
i=1

1

θ
I(0 ≤ xi ≤ θ).
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So the likelihood function is

L(θ|X1, · · · , Xn) =
1

θn

n∏
i=1

I(0 ≤ Xi ≤ θ).

An interesting fact is that
n∏

i=1

I(0 ≤ Xi ≤ θ) = I(0 ≤ Xmin ≤ Xmax ≤ θ),

where Xmin = min{X1, · · · , Xn} and Xmax = max{X1, · · · , Xn}. So the likelihood function increases when

θ decreases. However, it will drop to 0 immediately when θ < Xmax. Thus, the MLE of θ will be θ̂ = Xmax.

6.4 Bayesian estimators

Bayesian statistics is an alternative statistical paradigm that treats population parameters as random vari-
ables rather than fixed values. In Bayesian analysis, we assign a probability distribution to every parameter
in our model based on some prior beliefs. Thus, for a parametric model p(x; θ), the parameter of interest
θ is assumed to follow a prior distribution π(θ). The Bayesian probability model can then be written as
follows:

X1, · · · , Xn|θ
IID∼ p(x|θ)

θ ∼ π.

One of the goals of Bayesian inference is updating our distribution of θ after observing X1, · · · , Xn. This
new distribution is known a posterior distribution for θ. Bayesian estimators of θ will be some functions
of the posterior distribution. The posterior distribution of θ given X1, . . . , Xn, denoted by π(θ|X1, · · · , Xn)
is computed using the Bayes formula. For instance, if the prior of θ is discrete:

π(θ|X1, · · · , Xn) =
p(X1, · · · , Xn, θ)

p(X1, · · · , Xn)
=

p(X1, · · · , Xn|θ)π(θ)∑
θ̃ p(X1, · · · , Xn|θ̃)π(θ̃).

∝ p(X1, · · · , Xn|θ)︸ ︷︷ ︸
likelihood

×π(θ)︸︷︷︸
prior

.

The posterior distribution reflects our belief about the parameter after seeing the data and we can use it as
a measure of uncertainty about θ. If the posterior distribution is more spread out, then the uncertainty in
our inference is larger. On the other hand, if the posterior distribution is very concentrated, then there is
very little (Bayesian) uncertainty.

There are two common estimators in Bayesian inference: the posterior mean and the maximum a posteriori
(MAP) estimator.

Posterior mean. The posterior mean, θ̂π = E[θ|X1, . . . , Xn], can be seen as the estimator of θ that
minimizes some mean square error (recall Lecture 5).

θ̂π = E[θ|X1, · · · , Xn] =

∫
θ · π(θ|X1, · · · , Xn)dθ.

Maximum a posteriori (MAP) estimation. Another common estimator of θ is the MAP estimator;

it relies on a principle similar to the MLE – we choose as θ̂MAP the value that is most likely a posteriori.
Formally, the MAP estimator is defined as

θ̂MAP = argmaxθπ(θ|X1, · · · , Xn).
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Example: Beta-Binomial-Beta. Assume that we have an observation (random variable) Y ∼ Bin(N, θ)
where N is known and the parameter of interest is θ:

P (Y = y|θ) =
(
N

y

)
θy(1− θ)N−y.

We assume that the prior distribution of θ is a Beta distribution with known parameters (α, β), α, β > 0.
Namely,

π(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1,

where Γ(z) =
∫∞
0

tz−1e−tdt is the Gamma function. Note that α and β are sometimes called hyperparame-
ters. The prior mean of θ is E[θ] = α

α+β .

The posterior distribution of θ is

π(θ|Y ) =

(
N
Y

)
θY (1− θ)N−Y Γ(α+β)

Γ(α)Γ(β)θ
α−1(1− θ)β−1∫ (

N
Y

)
θY (1− θ)N−Y Γ(α+β)

Γ(α)Γ(β)θ
α−1(1− θ)β−1dθ

∝ θY+α−1(1− θ)N−Y+β−1.

With a little bit more computation, we can confirm that the posterior distribution of θ is a again a Beta
distribution but now with parameters (Y + α,N − Y + β). Then the posterior mean and MAP estimators
are

θ̂π =
Y + α

N + α+ β
, θ̂MAP =

Y + α− 1

N + α+ β − 2

(these are the mean and the mode of a Beta distribution).

Note that in this problem, the MLE for θ is θ̂MLE = Y
N , (computed by maximizing the likelihood L(θ) which

assumes that θ is fixed.

Thus, the posterior mean has an interesting decomposition:

θ̂π =
Y + α

N + α+ β

= θ̂π =
Y

N + α+ β
+

α

N + α+ β

=
Y

N
× N

N + α+ β
+

α

α+ β
× α+ β

N + α+ β

= θ̂MLE ×W + [Prior mean]× (1−W ),

where W = N
N+α+β tends to 1 when N → ∞. This phenomenon that the posterior mean can be written

as a weighted average of the MLE and the prior mean occurs in some cases (but does not hold for every
Bayesian posterior mean estimator). Moreover, the fact that the weights W → 1 as the sample size N → ∞
imply that with a large enough data set, the prior distribution becomes almost irrelevant for θ̂π.

Example: Normal-Normal-Normal. Suppose that X1, · · · , Xn
IID∼ N (µ, σ2), and that σ2 is known, so

that θ ≡ µ. Furthermore, suppose that we assume the prior distribution of µ is N (ξ, τ2), where ξ, τ2 are
pre-specified. Now, we derive the posterior distribution of µ given X1, · · · , Xn and the specified parameters.
Hence,

π(µ|X1, · · · , Xn) ∝ exp(− 1

2τ2
(µ− ξ)2)

n∏
i=1

exp(− 1

2σ2
(Xi − µ)2).
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Note that log π(µ|X1, · · · , Xn) will be a quadratic function of µ. After some computation, we can derive
that π(µ|X1, · · · , Xn) will still be a normal distribution but now with new parameters. In fact,

log π(µ|X1, · · · , Xn) = C0 −
1

2τ2
(µ− ξ)2 −

n∑
i=1

− 1

2σ2
(Xi − µ)2,

which after some further computation

E[µ|X1, · · · , Xn] =
τ2

τ2 + σ2/n
Xn +

σ2/n

τ2 + σ2/n
ξ

Var(µ|X1, · · · , Xn) =
σ2τ2

σ2 + nτ2
.

In this case, again, the posterior mean can be written as the weighted average of the prior mean and the
MLE estimate.

µ̂π =
τ2

τ2 + σ2/n
Xn +

σ2/n

τ2 + σ2/n
ξ

= µ̂MLE ×W + ξ × (1−W )

= MLE×W + [Prior mean]× (1−W ),

where W = Wn = τ2

τ2+σ2/n

n→∞→ 1.

Remark.

• Choice of prior and conjugate prior. Sometimes it is convenient to choose a prior distribution for
θ such that given p(X1, . . . , Xn|θ), we know that the posterior distribution of θ will be in the same
family as the prior. We observed to examples of this above, Beta → Beta, and Normal → Normal. If
a prior distribution and a likelihood function lead to a posterior that belongs to the same family as
the prior, we call this prior a conjugate prior. There are several conjugate priors know to date, see
https://en.wikipedia.org/wiki/Conjugate_prior for an incomplete list of cases.

• Uninformative priors. If you do not have any prior belief about θ, you may want to choose a prior
that is as “uninformative” as possible. This turns out to be very difficult – perhaps impossible –, see
e.g. this discussion on stackexchange or this article Noninformative Priors Do Not Exist: A Discussion
with José M. Bernardo (that is also a discussion). Still, a common choice for researchers looking for
a prior that is as uninformative as possible is the Jeffreys prior2, which equals π(θ) ∝

√
det(I1(θ)),

where I1(θ) is the Fisher information matrix.

• Challenge in computing the posterior. If we do not choose a conjugate prior, the posterior distri-
bution could be difficult to compute. The challenge often comes from the normalization quantity
p(X1, · · · , Xn) in the denominator of the posterior π(θ|X1, · · · , Xn). In these cases, numerical meth-
ods such as the Monte Carlo method, are used to estimate posterior – the intuition being is that if you
have a way to generate enough points from π(θ|X1, · · · , Xn) the empirical posterior should approximate
the true posterior distribution well.

• Consistency. In a Bayesian point of view, statistical consistency (convergence in probability to the
true parameter) is not an important property because there is no single true parameter. Thus, the
posterior distribution is the quantity that we really need to make our inference. However, sometimes
Bayesian estimators, such as the posterior mean or MAP, do have statistical consistency. Namely,

θ̂π
P→ θ0 and θ̂MAP

P→ θ0, where the data X1, · · · , Xn
IID∼ p(x; θ0). This is related to the Bernstein-von

Mises theorem3.
2see https://en.wikipedia.org/wiki/Jeffreys_prior for more details.
3https://en.wikipedia.org/wiki/Bernstein%E2%80%93von_Mises_theorem

https://en.wikipedia.org/wiki/Conjugate_prior
https://stats.stackexchange.com/questions/20520/what-is-an-uninformative-prior-can-we-ever-have-one-with-truly-no-information
http://www.stats.org.uk/priors/noninformative/IronySingpurwalla1997.pdf
http://www.stats.org.uk/priors/noninformative/IronySingpurwalla1997.pdf
https://en.wikipedia.org/wiki/Jeffreys_prior
https://en.wikipedia.org/wiki/Bernstein%E2%80%93von_Mises_theorem
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6.5 Empirical risk minimization (ERM) and M-estimation

Recall that in Lecture 5, our goal was to find an estimator (predictor) that minimizes the risk function.
Another approach for computing “good” estimators is known as empirical risk minimziation (ERM).
This approach is widely used in machine learning and many modern statistical procedures. In fact, this
methods can be viewed as a generalization of the maximum likelihood estimation, since for certain loss
functions, the estimators derived by ERM match the MLE (An example is included in Homework 4!)

6.5.1 Motivation: least squares estimates

Consider again the linear regression problem where we observe (X1, Y1), · · · , (Xn, Yn), and want to find a
good estimator of Y that is a linear function of X. We assume that each Xi is p + 1 dimensional vector,
that is, Xi = (Xi,1 = 1, · · · , Xi,p+1) (Xi is now playing the role of Z from Lecture 5). Furthermore, we may
assume that

E[Y |X] = XTβ,

where β ∈ Rp+1.

Ideally, we want to compute the estimate of β by minimizing the MSE, i.e.,

β∗ = argminβR(β) = argminβE[(Y −XTβ)2].

However, if we do not know the distribution of X,Y (and do not want to assume one), we cannot compute
the above estimator. Instead, we can choose to approximate the MSE using empirical mean square errors,
i.e., we approximate R(β) by

R̂(β) =
1

n

n∑
i=1

(Yi −XT
i β)

2.

The estimator we derive in this case, will be the least squares estimate (LSE):

β̂ = argminβR̂(β) = argminβ
1

n

n∑
i=1

(Yi −XT
i β)

2.

The ERM takes the above idea and runs with it, applying the same estimation process with various loss
functions.

6.5.2 A general ERM approach

Recall that in prediction, a loss function L : Y ×Y 7→ R is a function that measures the quality of prediction
(or estimation). Note that Y is the support of Y . As discussed, a popular loss function is the square loss,
i.e., L(a, b) = (a− b)2, a, b ∈ R. But we can also consider more complex functions such as the absolute loss,
L(a, b) = |a− b|, the Huber loss from Lecture 5, or others.

As mentioned in Lecture 5, the risk will be equal to the expected value of the loss. In the case of mean
square prediction the risk is R(β) = E[L(Y, fβ(X))] = E[(Y −XTβ)2]. In general, with any loss function L,
the risk function is

R(β) = E[L(Y, fβ(X))].

We may not be able to compute the risk function analytically if we do not know the joint distribution
of (X,Y ). Instead, we will approximate the risk with something computable from data, in our case, the
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empirical risk:

R̂(β) =
1

n

n∑
i=1

L(Yi, fβ(Xi)).

With enough data, the empirical risk, should approximate the true risk (similar intuition as with empirical

CDF). We then construct β̂ERM by minimizing R̂(β), namely,

β̂ERM = argminβR̂(β).

Example: least absolute deviation. Consider the loss function L(a, b) = |a − b|. Then the regression
estimator

β̂LAD = argminβR̂(β) = argminβ
1

n

n∑
i=1

|Yi −XT
i β|

is called the least absolute deviation (LAD) estimator. It is more robust against outliers compared to the
LSE due to use of L1 norm (absolute value) as the loss function.
Note: the LSE is approximating the conditional mean of Y given X by a linear function; the LAD will be
approximating the conditional median of Y given X by a linear function.

6.5.3 M-estimation

The ERM is actually a special case of a more general procedure called M-estimation. In M-estimation, we
compute an estimator by maximizing an empirical objective function, i.e.,

θ̂ = argmaxθ
1

n

n∑
i=1

ω(θ;Xi)

for some function ω. To see why you can consider this process as a generalization of ERM, note that we can
write:

argminβR̂(β) = argmaxβ(−R̂(β)).

Note that for M-estimation, we do not need to be optimizing the risk, but can choose to optimize a different
function. It is easy to see that if we choose the objective function to be the log-likelihood function

L(θ) =
1

n

n∑
i=1

ℓ(θ|Xi) =
1

n

n∑
i=1

log p(Xi; θ),

then the M-estimator is the MLE.

References
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Lecture 7: Multinomial distribution
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Additional reading: Chapter 7 of Perlman (2019).

The multinomial distribution is a common distribution for characterizing categorical variables. Suppose a
random variable Z has k categories. We can code each category as an integer, leading to Z ∈ {1, 2, · · · , k}.
Suppose that P (Z = k) = pk. The parameter {p1, · · · , pk} describes the entire distribution of Z (with the
constraint that

∑
j pj = 1). Suppose we generate Z1, · · · , Zn IID from the above described distribution. and

let the random vector X be such that, X = (X1, · · · , Xk), where

Xj =

n∑
i=1

I(Zi = j) = # of observations in the category j.

Then X is said to be multinomially distributed with parameter (n, p1, · · · , pk). We often write

X ∼ Mk(n; p1, · · · , pk)

to denote a multinomial distribution.

Example (pet lovers). The following is a hypothetical dataset about how many students prefer a particular
animal as a pet. Each row (except the ‘total’) can be viewed as a random vector from a multinomial
distribution. For instance, the first row (18, 20, 6, 4, 2) can be viewed as a random draw from a multinomial
distribution M5(n = 50; p1, · · · , p5) . The second and the third row can be viewed as other random draws
from the same distribution.

cat dog rabbit hamster fish total
Class 1 18 20 6 4 2 50
Class 2 15 15 10 5 5 50
Class 3 17 18 8 4 3 50

7.1 Properties of multinomial distribution

The PMF of a multinomial distribution has a the following If X ∼ Mk(n; p1, · · · , pk), then

p(X = x) = p(X1 = x1, · · · , Xk = xk) =
n!

x1!x2! · · ·xk!
px1
1 · · · pxk

k .

The multinomial coefficient n!
x1!x2!···xk!

=
(

n
x1,··· ,xn

)
is the number of possible ways to put n balls into k boxes.

Note that by the multinomial theorem

(a1 + a2 + · · ·+ ak)
n =

∑
xi≥0,

∑
i xi=n

n!

x1!x2! · · ·xk!
ax1
1 ax2

2 · · · axk

k .

Hence,
∑

xi≥0,
∑

i xi=n p(X = x) = (p1 + p2 + · · ·+ pk)
n = 1.

7-1
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By the construction of a multinomial Mk(n; p1, · · · , pk) above, we note that if X ∼ Mk(n; p1, · · · , pk),
then X =

∑n
i=1 Zi, where Z1, · · · , Zn ∈ {0, 1}k are IID multinomial random variables with parameter

(1; p1, · · · , pk), that is Z1, · · · , Zn
IID∼ Mk(1; p1, · · · , pk).

The moment generating function of X can then be derived from the moment generating functions of Zi’s

MX(s) = E[es
TX ] = E[es

TZ1 ]n =

 k∑
j=1

pje
sj

n

The multinomial distribution various nice properties which we explore next.

7.1.1 Additive and marginal properties

Suppose X ∼ Mk(n; p1, · · · , pk) and Y ∼ Mk(m; p1, · · · , pk) and X ⊥ Y . Then we will have that,

X + Y ∼ Mk(n+m; p1, · · · , pk).

Suppose we focus on one particular category j, and consider the distribution of Xj . One can show that,

Xj ∼ Bin(n, pj).

Note that X1, · · · , Xk are not independent due to the constraint that X1 +X2 + · · ·+Xk = n. However, for
any Xi and Xj elements of the random vector X, one can show that

Xi +Xj ∼ Bin(n, pi + pj).

An intuitive way to think of this is that Xi+Xj will represent the number of observations in either category
i or category j. So we are essentially pulling two categories together.

7.1.2 Conditional distributions of multinomials

Here we illustrate a property of the multinomial distributions using an example with k = 4, but this property
applies to more general scenarios. Let X = (X1, X2, X3, X4) ∼ M4(n; p1, p2, p3, p4). Suppose we combine
the last two categories into a new category. Let W = (W1,W2,W3) be the resulting random vector. By
construction, W3 = X3 +X4 and W1 = X1,W2 = X2. Then

W ∼ M3(n, q1, q2, q3), q1 = p1, q2 = p2, q3 = p3 + p4.

So pulling two or more categories together will result in a new multinomial distribution.

Let Y = (Y1, Y2) such that Y1 = X1 +X2 and Y2 = X3 +X4. We know that Y ∼ M2(n; p1 + p2, p3 + p4).
What will the conditional distribution of X|Y be?

P ((X1, X2, X3, X4) = (x1, x2, x3, x4)|(Y1, Y2) = (y1, y2))

=
P ((X1, X2, X3, X4) = (x1, x2, x3, x4))

P ((Y1, Y2) = (y1, y2))
I(y1 = x1 + x2, y2 = x3 + x4)

=
n!

x1!x2!x3!x4!
px1
1 px2

2 px3
3 px4

4

n!
y1!y2!

(p1 + p2)y1(p3 + p4)y2
I(y1 = x1 + x2, y2 = x3 + x4)

=
(x1 + x2)!

x1!x2!

(
p1

p1 + p2

)x1
(

p2
p1 + p2

)x2

× (x3 + x4)!

x3!x4!

(
p3

p3 + p4

)x3
(

p4
p3 + p4

)x4

= P ((X1, X2) = (x1, x2)|Y1 = y1)P ((X3, X4) = (x3, x4)|Y2 = y2)
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which leads us to conclude that

X1, X2|X1+X2 ∼ M2

(
X1 +X2;

p1
p1 + p2

,
p2

p1 + p2

)
, X3, X4|X3+X4 ∼ M2

(
X3 +X4;

p3
p3 + p4

,
p4

p3 + p4

)
.

and that
(X1, X2) ⊥ (X3, X4)|Y,

i.e., they are conditionally independent.

Because X1 +X2 = n−X3 −X4, the above result also implies that

X1, X2|X3, X4
d
= X1, X2|n−X3 −X4 ∼ M2

(
n−X3 −X4;

p1
p1 + p2

,
p2

p1 + p2

)
,

where X
d
= Y means that the two random variables have the same distribution. Thus, one can see that

(X1, X2) and (X3, X4) have a negative linear relation.

General case. Suppose that we partition X = (X1, · · · , Xk) into r blocks

(X1, · · · , Xk1
)︸ ︷︷ ︸

B1

, (Xk1+1, · · · , Xk2
)︸ ︷︷ ︸

B2

, · · · , (Xkr−1+1, · · ·Xkr
)︸ ︷︷ ︸

Br

.

Then we have B1, · · · , Br are conditionally independent given S1, · · · , Sr, where S1 =
∑k1

i=1 Xi =
∑

j B1,j

and Sr =
∑kr

i=kr−1+1 Xi =
∑

j Br,j are the block-specific sum.

Also,

Bj |Sj ∼ Mkj−kj−1

Sj ;
pkj−1+1∑kj

ℓ=kj−1+1 pℓ
, · · · ,

pkj∑kj

ℓ=kj−1+1 pℓ

 .

Now, we consider the case where X ∼ Mk(n; p1, · · · , pk), and we focus on only two variables Xi and Xj

(i ̸= j). What will the conditional distribution of Xi|Xj be?

Using the above formula, we choose r = 2 and the first block contains everything except Xj and the second
block only contains Xj . This implies that S1 = n− S2 = n−Xj . Thus,

(X1, · · · , Xj−1, Xj+1, · · · , Xk)|Xj
d
= (X1, · · · , Xj−1, Xj+1, · · · , Xk)|n−Xj ∼ Mk−1

(
n−Xj ;

p1
1− pj

, · · · , pk
1− pj

)
.

So the marginal of the above,

Xi|Xj ∼ Bin

(
n−Xj ,

pi
1− pj

)
.

As a result, we see that Xi and Xj are negatively correlated. To confirm, we compute their covariance below.

Cov(Xi, Xj) = E[Cov(Xi, Xj |Xj)︸ ︷︷ ︸
=0

] + Cov(E[Xi|Xj ],E[Xj |Xj ]︸ ︷︷ ︸
=Xj

)

= Cov(E[Xi|Xj ], Xj)

= Cov

(
(n−Xj)

pi
1− pj

, Xj

)
= − pi

1− pj
Var(Xj)

= −npipj .
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7.2 Estimating multinomial parameters

Suppose we observe a random vector X from a multinomial distribution. We often know the total number
of individuals n but the parameters p1, · · · , pk are may need to be estimated. We explain below how to use
the MLE to estimate these parameters. Note that the multinomial distribution belongs to the (multivariate)
exponential family.

For the parameter θ = (p1, . . . , pk) of a multinomial distribution, the parameter space is Θ = {(p1, · · · , pk) :
0 ≤ pj ,

∑k
j=1 pj = 1}. We observe the random vector X = (X1, · · · , Xk) ∼ Mk(n; p1, · · · , pk). In this case,

the likelihood function is

Ln(p1, · · · , pk|X) =
n!

X1! · · ·Xk!
pX1
1 · · · pXk

k

and the log-likelihood function is

ℓn(p1, · · · , pk|X) =

k∑
j=1

Xj log pj + log(

(
n

x1, x2, . . . , xk

)
),

where Cn =
(

n
x1,x2,...,xk

)
is a constant is independent of p. Note that, in this case, naively computing the

roots of the score function does not lead to the correct estimate for the pjs. This is due to the fact that we

are ignoring the constraint of the parameter space, that is
∑k

j=1 pj = 1. Truly we want to compute

argmax
(θ∈Θ)

ℓn(θ|X) = argmax
(p1,...,pk);

∑
j pj=1

ℓn((p1, . . . , pk)|X).

One can show that the solution to this constrained optimization problem will be equivalent to the solution
of the following (unconstrained) problem

argmax
(p1,...,pk,λ)

F (θ, λ) = argmax
(p1,...,pk,λ)

[ k∑
j=1

Xj log pj + λ

1−
k∑

j=1

pj

]
.

The function F (θ, λ) above is known as the Lagrangian, or the Lagrange function, and the new parameter
λ is known as the Lagrange multiplier. Please see a course on mathematical optimization for details, also
discussed further in 513.

We can now treat the above problem in the classical way, that is, differentiate the Lagrangian with respect
to p1, · · · , pk, and compute the roots. Then

∂F

∂pj
=

Xj

pj
− λ = 0 ⇒ Xj = λ̂ · p̂MLE,j .

The only thing left is to compute λ̂ using our constraints. Thus, n =
∑k

j=1 Xj = λ̂
∑k

j=1 pj = λ̂ so

p̂MLE,j =
Xj

n , which is just the proportion of observations that belong to category j.

7.3 Dirichlet distribution and Bayesian estimators

The Dirichlet distribution is a continuous distribution relevant to the Multinomial. Sampling from a Dirichlet
distribution leads to a random vector with length k where each element of this vector is non-negative and
sum over the elements is 1, meaning that the Dirichlet distribution generates a random probability vector.
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The Dirichlet distribution is a multivariate distribution over the simplex
∑k

i=1 xi = 1 and xi ≥ 0. Its
probability density function is

p(x1, · · · , xk;α1, · · · , αk) =
1

B(α)

k∏
i=1

xαi−1
i ,

where B(α) =
∏k

i=1 Γ(αi)

Γ(
∑k

i=1 αi)
, with Γ(α) being the Gamma function and α = (α1, · · · , αk) the parameters of

this distribution, where αi > 0, for all i. The Dirichlet distribution can be viewed as a generalization of the
Beta. For Z = (Z1, · · · , Zk) ∼ Dirich(α1, · · · , αk),

E(Zi) =
αi∑k
j=1 αj

, and the mode of Zi is
αi − 1∑k
j=1 αj − k

.

So each parameter αi determines the relative importance of category (state) i. The Dirichlet distribution is
very popular for use in social sciences and linguistics analysis.

The Dirichlet distribution is often used as a prior distribution for the Multinomial parameter p1, · · · , pk in
Bayesian inference. The fact that it generates a probability vector makes it an excellent candidate for this
job and in fact it is a conjugate prior for this problem. Let p = (p1, · · · , pk). Assume that

X|p = (X1, · · · , Xk)|p ∼ Mk(n; p1, · · · , pk)

and we place a prior
p ∼ Dirich(α1, · · · , αk).

The two distributional assumptions imply that the posterior distribution of p will be

π(p|X) ∝ n!

x1!x2! · · ·xk!
px1
1 · · · pxk

k × 1

B(α)
pα1−1
1 · · · pαk−1

k

∝ px1+α1−1
1 · · · pxk+αk−1

k

∼ Dirich(x1 + α1, · · · , xk + αk).

If we use the posterior mean as our estimate, then

p̂π,i =
xi + αi∑k

j=1 xj + αj

,

which is also the MLE when we observe the counts x′ = (x′
1, · · · , x′

k) such that x′
j = xj +αj . However, note

that above, αj does not have to be an integer. So the prior parameter αj can be viewed as a pseudo count
of the category j before collecting the data.
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8.1 Review of linear algebra

An m× n matrix A = {aij} is an array of nm elements such that

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn

 .

In this case, we can write A ∈ Rm×n. The matrix applied to a vector represents a linear mapping (linear
transformation) A : Rn → Rm (x 7→ Ax), where x ∈ Rn is written as a column vector (i.e., an n× 1 matrix)
and

Ax =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn



x1

x2

...
xn

 =


∑

j a1jxj∑
j a2jxj

...∑
j amjxj


Clearly, the above operation implies the linear addition, i.e., for any a, b ∈ R and x, y ∈ Rn, A(ax + by) =
aAx+ bAy.

For two m× n matrices A,B, the addition A+ B is another m× n matrix such that [A+ B]ij = aij + bij .
For an m× n matrix A and an n× p matrix B, the matrix multiplication AB is an m× p matrix such that

[AB]ij =

n∑
k=1

aikbkj .

A very important property is that AB ̸= BA in general even if m = n = p.

8.1.1 Useful characteristics of a matrix

Rank. The rank of a matrix A, denoted as rank(A), is the dimension of its column space. The column space
is the vector space spanned by a·1, · · · , a·n, the column vectors of A, i.e.,

a·j =


a1j
a2j
...

amj

 .

8-1
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One can easily verify that rank(A) ≤ min{m,n}. Also, rank(AB) ≤ min{rank(A), rank(B)}.

Identity matrix. The n × n identity matrix In is a matrix that has 1’s on its diagonal and 0 elsewhere.
Namely, In = Diag(1, 1, 1, · · · , 1). One can easily see that for an m × n matrix A and n × m matrix B,.
AIn = A and InB = B.

Inverse. The inverse of an n× n (square) matrix A, denoted as A−1, is an n× n matrix with the property
that AA−1 = A−1A = In. Note: the inverse may not exist. When the inverse of A exists, A is called regular
otherwise it is called singular. The followings are equivalent of a n× n square matrix A:

• A is regular/non-singular (i.e., has an inverse matrix).

• A is full rank, i.e., rank(A) = n.

• The determinant of A is not 0 (we will define a determinant later).

If both n × n matrices A,B are regular, then AB is also regular with inverse (AB)−1 = B−1A−1. For a
diagonal matrix D = Diag(d1, · · · , dn), its inverse is D−1 = Diag(d−1

1 , · · · , d−1
n ).

Transpose. For an m×n matrix A, its transpose, denoted as AT , is an n×m matrix such that [AT ]ij = aji.
You can easily verify that (A+B)T = AT +BT , (AB)T = BTAT , and (A−1)T = (AT )−1.

Trace. For an n× n matrix A, its trace, denoted as Tr(A), is Tr(A) =
∑n

i=1 aii. One can easily verify that
Tr(aA+ bB) = aTr(A)+ bTr(B) and Tr(A) = Tr(AT ). Moreover, for an m×n matrix A and an n×m matrix
B, Tr(AB) = Tr(BA).

Triangular matrix. An n × n matrix A is upper triangular if aij = 0 for all i < j. An n × n matrix
A is lower triangular if AT is upper triangular. A matrix is called triangular if it is either upper or lower
triangular.

Determinant. For s square n×n matrix A, its determinant, denoted as |A| or det(A), or sometimes Det(A),
is

det(A) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

aiσ(i),

where Sn is the set of all possible permutations of {1, 2, 3, · · · , n} and σ is one of the permutations in Sn.
Additionally, sgn(σ) = ±1 is the signature of the permutation σ, it is +1 if the permutation σ can be
obtained with an even number of transpositions, otherwise it is −1. Note that non-square matrices do not
have determinants.

Another way to define the determinant is using the recursive Laplace expansion. Here we note that a
determinant for a 2× 2 matrix

A =

(
a b
c d

)
is

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc,

and for a 3× 3 matrix

B =

a b c
d e f
g h i

 is

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = aei+ bfg + cdh− ceg − bdi− afh,

recall the Sarrus rule.
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Laplace expansion. Then for a determinant of a general n× n matrix A, by Laplace expansion we have
that

|A| =
n∑

j=1

(−1)i+jai,jMi,j ,

where ai,j is the element of A in the i-th row and j-th column, and Mi,j is the minor of A, that is, the
determinant of an (n− 1)× (n− 1) matrix that results from A by removing the i-th row and j-th column.
The expression (−1)i+jMi,j is also known as a cofactor of A.

Here are some useful properties of the determinant:

• det(cA) = cndet(A), for A ∈ Rn×n,

• for A = [a·1, . . . , a·n], det(A) = det([a·1, . . . , a·j , . . . , a·i . . . , a·n]) = −det([a·1, . . . , a·i, . . . , a·j . . . , a·n]).
This property can be applied iteratively.

• det(AB) = det(A) · det(B), when they are both square matrices

• det(A)−1 = det(A−1),

• det(AT ) = det(A), det(A) =
∏n

i=1 aii if A is triangular.

• det(AB) = det(A) · det(B) if A and B are square matrices.

• det(A)−1 = det(A−1).

Orthogonal matrix. An n× n matrix U is orthogonal if UTU = In. Namely, its column vectors form an
orthonormal basis of Rn. Note that one can easily see that this implies that UT = U−1 so UUT = In as
well.

Eigenvalues and eigenvectors. For an n × n matrix, its eigenvalues are the n roots λ1, · · · , λn to the
following polynomial equation:

det(A− λIn) = 0.

For each λj , there exists a vector uj such that (A− λjIn)uj = 0 or Auj = λjuj . Such a vector uj is called
the eigenvector corresponding to λj . Note that if λj is distinct from other eigenvalues, then uj is unique.
Also note that the eigenvalues and eigenvector may not be real numbers/vectors.

8.1.2 Symmetric matrices

A square matrix A ∈ Rn×n is symmetric if aij = aji, i.e., A = AT . In what follows, we will review some
useful properties of a symmetric matrix.

For a symmetric matrix A ∈ Rn×n, it has the following properties:

• Eigenvalues and eigenvectors are real numbers/vectors.

• For eigenvalues λj ̸= λk, their corresponding eigenvectors uj , uk are orthogonal, i.e., uT
j uk = 0.

• Spectral decomposition. Let λ1, · · · , λn be the eigenvalues of A and u1, · · · , un be the corresponding
eigenvectors. Let Λ = Diag(λ1, · · · , λn) and U = [u1, · · · , un]. Then

A = UΛUT =

n∑
i=1

λiuiu
T
i .

This is known as the spectral decomposition.
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• Trace. The trace of A is Tr(A) =
∑n

i=1 λi.

• Determinant. The determinant of A is det(A) =
∏n

i=1 λi

Positive definite matrix. A particular important class of symmetric matrices is the positive definite (PD)
matrices. A square matrix A ∈ Rn×n is positive semi-definite (PSD) if

xTAx ≥ 0

for all x ∈ Rn. It is positive definite if
xTAx > 0

for all x ∈ Rn and xTx > 0.

Here are some useful properties of PD and PSD matrices.

• The identity matrix is PD.

• A diagonal matrix D is PD if Dii > 0 for all i and is PSD if Dii ≥ 0 for all i.

• If S ∈ Rn×n is PSD and A ∈ Rm×n be any matrix, then ASAT is PSD.

• If S ∈ Rn×n is PD and A ∈ Rm×n be any matrix with rank(A) = m ≤ n, then ASAT is PD.

• AAT is PSD for any m× n matrix A.

• AAT is PD for any m× n matrix A with rank(A) = m ≤ n.

• A is PD ⇒ A is full rank ⇒ A−1 exists ⇒ A−1 = A−1AA−1 is PD.

• A symmetric matrix A is PSD (PD) if all its eigenvalues λj ≥ 0 (> 0).

• If A ∈ Rn×n is PD, then let its spectral decomposition be A = UΛUT . Then the square root of A, a
matrix C such that CCT = A, is C = U

√
ΛUT , where

√
Λ = Diag(

√
Λ11, · · · ,

√
Λnn).

Partitioned PD matrix. Suppose that A ∈ Rn×n is a PD matrix and we suppose that it can be decomposed
into 4 submatrices

A =

(
S11 S12

S21 S22

)
,

where Sij ∈ Rni×nj with i, j = 1, 2 and n = n1 + n2. Then we have the following properties:

• S11 and S22 are both PD.

• Let S11,2 = S11 − S12S
−1
22 S21. Then(

In1
−S12S

−1
22

0 In2

)(
S11 S12

S21 S22

)(
In1

0
−S−1

22 S21 In2

)
=

(
S11,2 0
0 S22

)
so S11,2 is PD as well.

• Following from the above result, we have(
S11 S12

S21 S22

)
=

(
In1

S12S
−1
22

0 In2

)(
S11,2 0
0 S22

)(
In1 0

S−1
22 S21 In2

)
(
S11 S12

S21 S22

)−1

=

(
In1

0
−S−1

22 S21 In2

)(
S−1
11,2 0

0 S−1
22

)(
In1 −S12S

−1
22

0 In2

)
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• Further, the above implies that

A is PD ⇔ S11,2, S22 are PD ⇔ S22,1, S11 are PD .

• For any vector x =

(
x1

x2

)
∈ Rn such that x1 ∈ Rn1 and x2 ∈ Rn2 ,

xA−1x = (x1 − S12S
−1
22 x2)S

−1
11,2(x1 − S12S

−1
22 x2) + x2S

−1
22 x2.

Later we will see that the above results are very useful in analyzing the conditional normal distribution.

8.1.3 Projection matrices

An n× n matrix P is called a projection matrix if it is symmetric and idempotent (P 2 = P · P = P ).

P is a projection matrix if and only if there exists orthogonal matrix U such that

P = U

(
Im 0
0 0

)
UT .

In this case rank(P ) = m.

Suppose that we can partition U = [U1, U2], where U1 ∈ Rn×m and U2 ∈ Rn×(n−m). Then the above
result implies that P = U1U

T
1 and PU1 = U1 and PU2 = 0. This means that P project any vector in Rn

into the column space of U1 and is orthogonal to the column space of U2. An interesting property is that
rank(P ) = Tr(P ) = m.

Also, the matrix In −P is another projection matrix that projects any vector in Rn to the space orthogonal
to the column space of U1. To see this, P (In − P ) = P − P 2 = 0.

8.2 Transforming multiple continuous random variables

In lecture 2, we have learned techniques to deal with transforming a single continuous random variable, i.e.,
investigating the distribution of U = f(X) when we know the distribution of X. In this section, we will
study a more general problem where we are transforming two or more (continuous) random variables.

We start with a simple case where we have two random variables X,Y and we know their joint PDF. Consider
two random variables U = f(X,Y ) and V = g(X,Y ), where u, v are two known functions.

We now study the joint PDF of (U, V ). By definition,

pU,V (u, v) =
∂2

∂u∂v
P (U ≤ u, V ≤ v)

=
∂2

∂u∂v
P (f(X,Y ) ≤ u, g(X,Y ) ≤ v)

=
∂2

∂u∂v
P ((X,Y ) ∈ R(u, v))

=
∂2

∂u∂v

∫
R(u,v)

pX,Y (x, y)dxdy,
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where
R(u, v) = {(x, y) : f(x, y) ≤ u, g(x, y) ≤ v}.

In some scenarios, this region R(u, v) has a nice form so that the probability P ((X,Y ) ∈ R(u, v)) has an
analytical expression, so that we can take derivatives easily. However, this expression might still be hard to
compute in general.

Example 1. Let X,Y ∼ Unif[0, 1]. Consider U = max{X,Y }, V = min{X,Y }. Note that there is an
implicit constraint on fU,V that fU,V (u, v) = 0 if v > u. So we consider any pair (u, v) : v ≤ u. By a direct
computation,

P (U ≤ u, V ≤ v) = P (U ≤ u)− P (U ≤ u, V > v)

= P (X ≤ u, Y ≤ u)− P (X ≤ u, Y ≤ u,X > v, Y > v)

= P (X ≤ u)P (Y ≤ u)− P (v < X ≤ u)P (v < Y ≤ u)

= u2 − (u− v)2

when 0 ≤ v ≤ u ≤ 1. Thus,

pU,V (u, v) =
∂2

∂u∂v
P (U ≤ u, V ≤ v) = 2I(0 ≤ v ≤ u ≤ 1).

Example 2. Consider X,Y ∼ Exp(1) and let U = X + Y and V = X
X+Y . Note that (U, V ) ∈ [0,∞)× [0, 1].

So we consider any u ≥ 0 and v ∈ [0, 1]. The joint CDF is

P (U ≤ u, V ≤ v) = P (X + Y ≤ u,X ≤ v(X + Y ))

= P

(
Y ≤ u−X,Y ≥ 1− v

v
X

)
= E

[
I

(
Y ≤ u−X,Y ≥ 1− v

v
X

)]
= E

[
E
[
I

(
Y ≤ u−X,Y ≥ 1− v

v
X

)
|X
]]

= E
[
P

(
Y ≤ u−X,Y ≥ 1− v

v
X|X

)]
.

Note that I(E) is the indicator function such that it returns 1 if the event E is true and 0 otherwise; one
can easily see that E[I(E)] = P (E). Conditioning on X, the probability

P

(
Y ≤ u−X,Y ≥ 1− v

v
X|X

)
= P (

1− v

v
X ≤ Y ≤ u−X|X)

=

∫ u−X

y= 1−v
v X

e−ydy

= e−
1−v
v X − eX−u.

Thus, using the fact that U ≤ u, V ≤ v, X
X+Y ≤ v, so X ≤ (X + Y )v ≤ uv, we have

P (U ≤ u, V ≤ v) = E
[
P

(
Y ≤ u−X,Y ≥ 1− v

v
X|X

)]
=

∫ uv

0

[e−
1−v
v x − ex−u]e−xdx

=

∫ uv

0

[e−
x
v − e−u]dx

= v(1− e−u − ue−u).
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By taking the derivative, we obtain

pU,V (u, v) = ue−uI(0 ≤ v ≤ 1) = ue−u︸ ︷︷ ︸
pU (u)

· I(0 ≤ v ≤ 1)︸ ︷︷ ︸
pV (v)

.

Thus, we conclude that U ∼ Gamma(2, 1) and V ∼ Uni[0, 1] and U ⊥ V .

8.2.1 Jacobian method

The Jacobian method is an elegant approach for substituting variables (change of varibales) in an integration.
Consider x ∈ Rn and y ∈ Rn and assume that there is a 1-1 and onto mapping (a bijection) T : Rn → Rn

for almost all x such that y = T (x). We define the Jacobian matrix

JT (x) =
(

∂T (x)
∂x

)
=
(
∂y
∂x

)
=


∂y1

∂x1

∂y2

∂x1
· · · ∂yn

∂x1
∂y1

∂x2

∂y2

∂x2
· · · ∂yn

∂x2

...
... · · ·

...
∂y1

∂xn

∂y2

∂xn
· · · ∂yn

∂xn

 ∈ Rn×n.

The Jacobian is the absolute value of the determinant of this matrix, i.e., |det(JT (x))| = |
(
∂y
∂x

)
| =

∣∣∣ ∂y∂x ∣∣∣.
Theorem 8.1 Assume that y = T (x), where T is 1-1 and onto for almost all x and the Jacobian det(JT (x)) ̸=
0 for all x. Let A,B ⊂ Rn be two subsets such that B = {T (x) : x ∈ A}. Let f be an integrable function.
Then ∫

A

f(x)dx =

∫
B

f(T−1(y)) |det(JT−1(y))| dy =

∫
B

f(T−1(y))

∣∣∣∣∂x∂y
∣∣∣∣ dy.

Under the same condition, suppose X is a random variable with a PDF pX(x) and Y = T (X). Then the
PDF of Y is

pY (y) = pX(T−1(y)) |det(JT−1(y)|

= pX(T−1(y))

∣∣∣∣∂x∂y
∣∣∣∣ .

The Jacobian has a nice chain rule that if z = S(y) and y = T (x) such that S, T are both 1-1 and onto.
Then ∣∣∣∣∂z∂x

∣∣∣∣ = ∣∣∣∣∂z∂y
∣∣∣∣ ∣∣∣∣∂y∂x

∣∣∣∣ .
Also, we have the inverse rule: ∣∣∣∣∂y∂x

∣∣∣∣ = ∣∣∣∣∂x∂y
∣∣∣∣−1

.

Example: Gamma distributions. Consider X,Y are IID Gamma (α, λ). Recall that the PDF of a
Gamma (α, λ) is

p(t) =
λα

Γ(α)
tα−1e−λtI(t ≥ 0).

Now we consider U = X + Y and W = X
X+Y . In this case, the mapping T (x, y) = (u,w) such that

T = (T1, T2) with T1(x, y) = x + y and T2(x, y) =
x

x+y . Thus, the inverse mapping T−1(u,w) = (x, y) will
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be T−1
1 (u,w) = uw and T−1

2 (u,w) = u− uw. The Jacobian∣∣∣∣ ∂(x, y)∂(u,w)

∣∣∣∣ = ∣∣∣∣∂T−1(u,w)

∂(u,w)

∣∣∣∣
=

∣∣∣∣det((w 1− w
u −u

))∣∣∣∣
= u.

We already know the joint PDF pXY (x, y) since they are independent Gamma. Thus,

pUW (u,w) = pXY (T
−1
1 (u,w), T−1

2 (u,w))uI(0 ≤ w ≤ 1, u ≥ 0)

= pX(T−1
1 (u,w))pY (T

−1
2 (u,w))uI(0 ≤ w ≤ 1, u ≥ 0)

=
λ2α

Γ2(α)
(uw)α−1e−λuw(u− uw)α−1e−λ(u−uw)uI(0 ≤ w ≤ 1, u ≥ 0)

=
λ2α

Γ2(α)
u2α−1e−λuI(u ≥ 0)wα−1(1− w)α−1I(0 ≤ w ≤ 1)

= pU (u)pW (w)

such that U ∼ Gamma(2α, λ) and W ∼ Beta(α, α).

Example: Polar coordinates. A common reparametrization of two variables X,Y is through the polar
coordinates R,Θ. Specifically, we choose R =

√
X2 + Y 2 and Θ ∈ [0, 2π] such that

X = R cos(Θ), Y = R sin(Θ).

In this case, T (x, y) = (r, θ) is 1-1 and onto for almost all points (x, y) except (0, 0) so we can still apply the
Jacobian trick. You can easily work out that ∣∣∣∣∂(x, y)∂(r, θ)

∣∣∣∣ = r

so if we know the PDF of X,Y as pX,Y (x, y), then

pR,Θ(r, θ) = pX,Y (r cos(θ), r sin(θ))r.

If the joint PDF of (X,Y ) is over a circle or ellipse, (also called radial), i.e., pX,Y (x, y) = g(x2 + y2), then
pR,Θ(r, θ) = g(r2)r so R ⊥ Θ and Θ ∼ Uni[0, 2π].

8.3 Random vectors and the covariance matrix

A random vector is a vector of random variables. Let X ∈ Rn be a random vector. We often express X as
a column vector, i.e.,

X =


X1

X2

...
Xn

 .

The expectation/expected value of X is the elementwise expectation:

E[X] =


E[X1]
E[X2]

...
E[Xn]

 .
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Similar to random variables, the expectation is an linear operation of random vectors. Namely, for two
random vectors X,Y ∈ Rn and two real numbers a, b,

E[aX + bY ] = aE[X] + bE[Y ].

An important characteristic of a random vector is the variance-covariance matrix (often we just called it
the covariance matrix):

Cov(X) = E[(X − E[X])(X − E[X])T ]

=


Var(X1) Cov(X1, X2) Cov(X1, X3) · · · Cov(X1, Xn)

Cov(X2, X1) Var(X2) Cov(X2, X3) · · · Cov(X2, Xn)
...

...
... · · ·

...
Cov(Xn, X1) Cov(Xn, X2) Cov(Xn, X3) · · · Var(Xn)

 .

Using the fact that Var(Xi) = Cov(Xi, Xi), elements in the above matrix can be written as Cov(X)ij =
Cov(Xi, Xj).

Here are some nice properties of the covariance matrices.

• Cov(X) = E[XXT ]− E[X]E[X]T

• For a matrix A ∈ Rm×n and a vector b ∈ Rm,

Cov(AX + b) = ACov(X)AT .

• For a vector a ∈ Rn, Var(aTX) = aTCov(X)a.

• The covariance matrix is positive semi-definite (PSD).

• The covariance matrix is PD if the only vector a ∈ Rn such that Var(aTX) = 0 is a = 0.

The covariance matrix immediately implies some useful properties of the sample mean. Suppose X1, · · · , Xn

are IID with mean u and variance σ2. Then Xn = 1
n

∑n
i=1 Xi = aTX, where aj =

1
n . As a result,

Var(Xn) = aTCov(X)a =
1

n2

n∑
i=1

Var(Xi) =
σ2

n
.

Now, suppose that the random variables are not independent but instead, they have correlation Cor(Xi, Xj) =
ρ when i ̸= j. Then the variance of the sample mean will be

Var(Xn) = aTCov(X)a

=
(
1
n

1
n · · · 1

n

)


σ2 σ2ρ · · · σ2ρ
σ2ρ σ2 · · · σ2ρ
...

... · · ·
...

σ2ρ σ2ρ · · · σ2




1
n
1
n
...
1
n


=

1

n2
(nσ2 + n(n− 1)σ2ρ)

=
σ2

n
(1 + (n− 1)ρ).
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8.4 The multivariate normal distribution

Recall that for a standard Normal random variable Z1, its PDF is

pZ1
(z) =

1√
2π

e−z2/2.

Thus, for IID standard normal random variables Z1, · · · , Zn, we can represent them as a random vector Z
and its joint PDF will be

p(z1, · · · , zn) =
n∏

i=1

1√
2π

e−z2
i /2 =

(
1

2π

)n/2

e−
1
2

∑n
i=1 z2

i =

(
1

2π

)n/2

e−
1
2 z

T z.

Now we consider a linear transformation that A ∈ Rn×n is an invertible square matrix and µ ∈ Rn is a
vector and X = AZ + µ. Since Z is a random vector, X will also be a random vector. Using the fact that
Z = A−1(X − µ) and the Jacobian method, you can show that the PDF of X is

pX(x) = p(A−1(x− µ))|det(A−1)|

=

(
1

2π

)n/2

e−
1
2 (x−µ)T [A−1]TA−1(x−µ) 1√

(det(A))2

=

(
1

2π

)n/2

e−
1
2 (x−µ)T [A−1]TA−1(x−µ) 1√

det(AAT )

=

(
1

2π

)n/2
1√

det(AAT )
e−

1
2 (x−µ)T [AAT ]−1(x−µ)

=

(
1

2π

)n/2
1√

det(Σ)
e−

1
2 (x−µ)TΣ−1(x−µ),

where Σ = Cov(X) = AAT is the covariance matrix of X. Note that E[X] = µ by construction. In this
case, we will say that X is from a multivariate normal distribution with a mean (vector) µ and a covariance
matrix Σ. For abbreviation, we often write X ∼ Nn(µ,Σ).

The MGF of a multivariate normal. Using the same notation as above the MGF of Z can be derived
from the univariate standard normal MGFs of Z1, . . . , Zn using their IID property. That is

MZ(t) = E[et
TZ ] = E[e

∑
i tiZi ] = E[

∏
i

etiZi ] =
∏
i

E[etiZi ]

= MZ1
(t1)MZ2

(t2) · · ·MZn
(tn) = e

1
2

∑
i t

2
i = e

1
2 t

T t.

Then the MGF of X = AZ + µ is

MX(t) = E[et
TX ] = E[et

T (AZ+µ))]

= et
TµE[et

TAZ ] = et
TµE[e(A

T t)TZ ]

= et
TµMZ(A

T t) (up to here true for all MGFs!)

= et
Tµ+ 1

2 t
TAAT t = et

Tµ+ 1
2 t

TΣt.

Linearity. The linear transformation of multivariate normal is still normal. Namely,

Y = CX + b ∼ Nn(Cµ+ b, CΣCT )
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for non-singular matrix C ∈ Rn×n and any vector b ∈ Rn.

Proof: Using the fact X = C−1(Y − b) and the Jacobian method, the PDF of Y is

pY (y) = pX(C−1(Y − b))|det(C−1)|

=

(
1

2π

)n/2
1√

det(Σ)
e−

1
2 (C

−1(y−b)−µ)TΣ−1(C−1(y−b)−µ) 1√
det(C)2

=

(
1

2π

)n/2
1√

det(Σ)det(C)det(CT )
e−

1
2 ((y−b−Cµ)T (C−1)TΣ−1C−1(y−b−Cµ)

=

(
1

2π

)n/2
1√

det(CΣCT )
e−

1
2 ((y−b−Cµ)T (CΣCT )−1(y−b−Cµ).

That is, Y ∼ Nn(Cµ+ b, CΣCT ).

For a vector a ∈ Rn,
aTX ∼ N(aTµ, aTΣa).

Proof: LetW = aTX, we will use the MGF of X for this proof. Since the MGF of X isMX(t) = et
Tµ+ 1

2 t
TΣt,

the MGF of W is

MW (t) = E[eta
TX ] = MX(ta) = eta

Tµ+ 1
2 t

2aTΣa.

That is, W ∼ N(aTµ, aTΣa). Note that in the above computation t is a scalar, t ∈ R, so tT = t.

Any marginal distribution of an MVN is Normal. Suppose X ∼ N (µ,Σ). Consider that Xi = eTi ·X,
where ei ∈ Rn is a basis vector that is made up of 0’s except in position i, where it is equal to 1, that is,
eTi = (0, . . . , 0, 1, 0, . . . , 0). Then by the linearity property above, Xi ∼ N (µi,Σii).

Similarly if W is any sub-vector of X, that is, if W = (Xw1
, . . . , Xwk

)T , for w1, . . . , wk ∈ {1, . . . , n}, wi ̸= wj ,

for i ̸= j. Then consider the re-ordered vector X titled X̃ such that X̃ = (X̃1, X̃2)
T , where X̃1 ≡ W and X̃2

is made up of all elements of X that are not in W .

We know that X̃ ∼ N (µ̃, Σ̃), where µ̃, Σ̃ are appropriately reordered versions of µ and Σ. Then let µ̃1, µ̃2 be

the mean vector that corresponds to each of the block of X̃1 and X̃2 and Σ̃ =

(
Σ̃11 Σ̃12

Σ̃21 Σ̃22

)
.

Then W =

(
Ik 0
0 0

)
X̃ and using the linearity property above it follows that

W ∼ Nn1(µ̃1, Σ̃11).

so the marginals of the random vector are also multivariate normals.

Independence ⇔ uncorrelation. If X is multivariate normal, then

Xi ⊥ Xj ⇔ Cov(Xi, Xj) ≡ Σij = 0.

Namely, pairwise independence is equivalent to uncorrelatedness.

Proof: (⇒) Xi ⊥ Xj ⇒ Cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ] = 0.

(⇐) From above marginal property, we know that (Xi, Xj) ∼ N2((µi, µj),

(
Σii 0
0 Σjj

)
) Then the MGF of
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(Xi, Xj) is:

MXi,Xj
(ti, tj) = exp(tiµi + tjµj +

1

2
t2iΣii +

1

2
t2jΣjj)

= exp(tiµi +
1

2
t2iΣii) exp(tjµj +

1

2
t2jΣjj)

= MXi(ti)MXj (tj).

so Xi ⊥ Xj . (We could have also chosen to look at the PDF of Xi, Xj directly.)

Any conditional distribution of an MVN is Normal. Suppose we partition X into two blocks

X =

(
X1

X2

)
,

where X1 ∈ Rn1 and X2 ∈ Rn2 . Let µ1, µ2 be the mean vector that corresponds to each of the block and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
. Then the conditional distribution of X1|X2 is

X1|X2 ∼ Nn1(µ1 +Σ12Σ
−1
22 (X2 − µ2),Σ11,2),

where Σ11,2 = Σ11 − Σ12Σ
−1
22 Σ21. You can compare this to the partitioned of PD matrix in Section 8.1.2.

Proof: Consider the following linear transformation of X:

Y =

(
In1 −Σ12Σ

−1
22

0 In2

)(
X1

X2

)
= CX,

where C is invertible (because it is upper-triangular). By the linearity,

Y =

(
X1 − Σ12Σ

−1
22 X2

X2

)
∼ Nn(Cµ,CΣCT ) = Nn

((
µ1 − Σ12Σ

−1
22 µ2

µ2

)
,

(
Σ11 − Σ12Σ

−1
22 Σ21 0

0 Σ22

))
.

It follows that X1 − Σ12Σ
−1
22 X2 ∼ Nn1

(µ1 − Σ12Σ
−1
22 µ2,Σ11 − Σ12Σ

−1
22 Σ21) and that X1 − Σ12Σ

−1
22 X2 ⊥ X2.

Thus,

X1|X2
d
= (X1 − Σ12Σ

−1
22 X2 +Σ12Σ

−1
22 X2)|X2 ∼ Nn1

(µ1 +Σ12Σ
−1
22 (X2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21).

Regression is Linear. Using the result above, we have that the regression function (conditional mean) is

E[X1|X2] = µ1 +Σ12Σ
−1
22 (X2 − µ2),

and the conditional variance
Var(X1|X2) = Σ11 − Σ12Σ

−1
22 Σ21.

8.4.1 Chi-square distribution

Let X = (X1, · · · , Xn)
T be a multivariate normal vector with mean 0 and identity covariance matrix. Then

the random variable

Wn =

n∑
i=1

X2
i = XTX = ∥X∥2
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has a distribution called the χ2 distribution with a degree of freedom n. In this case, we write Wn ∼ χ2
n.

The χ2
n is the same as Γ(n2 ,

1
2 ) and E(Wn) = n and Var(Wn) = 2n.

Normalizing a Gaussian vector. Suppose a random vector Y ∼ N(µ,Σ), then

Z = Σ− 1
2 (Y − µ) ∼ N(0, In)

so
ZTZ = (Y − µ)TΣ−1(Y − µ) ∼ χ2

n.

Projection property. Here is an interesting property of a projection matrix. Lete X ∼ N(µ, In) be a
multivariate normal vector in Rn. Let P ∈ Rn×n be a projection matrix with rank(P ) = Tr(P ) = m < n.
Then

(X − µ)TP (X − µ) ∼ χ2
m.

You can prove the above result using the decomposition in Section 8.1.3.

Proof: The projection matrix P can be decomposed as

P = CT

(
Im 0
0 0

)
C,

where CTC = In. Thus,

(X − µ)TP (X − µ) = (X − µ)TCT

(
Im 0
0 0

)
C(X − µ).

Using linearity,
Y = C(X − µ) ∼ Nn(0, CInC

T ) = Nn(0, CCT ) = Nn(0, In).

Then it follows that

(X − µ)TP (X − µ) = Y T

(
Im 0
0 0

)
Y =

m∑
i=1

Y 2
i ∼ χ2

m.

IID normals. Suppose X1, · · · , Xn ∼ N(µ, σ2) form an IID random sample. Let Xn = 1
n

∑n
i=1 Xi be the

sample mean and S2
n = 1

n−1

∑n
i=1(Xi −Xn)

2 be the sample variance. Then we have the following results:

(i) Xn and S2
n are independent.

(ii) Xn ∼ N(µ, σ2/n).

(iii) (n− 1)
S2
n

σ2 ∼ χ2
n−1.

Proof: Let X = (X1, · · · , Xn)
T be a multivariate normal formed by the IID elements. Let A ∈ R⋉ be an

orthogonal matrix (ATA = In) such that the last row of A is equal to an· =
1√
n
(1, 1, · · · , 1). (This matrix

exists and can be constructed using the Gram-Schmidt process).

Consider the vector Z = (Z1, . . . , Zn)
T defined as Z = AX. Note the following:

• Z ∼ Nn(Aµ,Cov(Z)), where Cov(Z) = Cov(AX) = ACov(X)AT = Aσ2InA
T = σ2AAT = σ2In,

• Zn =
√
nX̄n,
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• Additionally,
n∑

i=1

Z2
i = ZTZ = (AX)T (AX) = XTATAX = XTX =

n∑
i=1

X2
i .

• Also,
n−1∑
i=1

Z2
i =

n∑
i=1

Z2
i − Z2

n =

n∑
i=1

X2
i − nX̄n =

n∑
i=1

(Xi − X̄n)
2.

Since Zn ⊥ Z1, . . . , Zn−1 by above, we have that Zn ⊥
∑n−1

i Z2
n.

Now, (i) follows from the fact that Xn = 1√
n
Zn, and S2

n = 1
n−1

∑n−1
i=1 Z2

i .

Additionally, (ii) follows by linearity, since Zn ∼ N (
√
nµ, σ2) and Xn = 1√

n
Zn.

Lastly, for (iii) let Q = In−ana
T
n , and note that S2

n = 1
n−1∥QX∥22. We also note that Q is a projection matrix

(Q = QT = Q2) with tr(Q) = n−1. Using the projection property and the fact that
√
naTnQ =

√
nQan = 0,

1

σ2
XTQX =

1

σ2
(X − µ

√
nan)

TQ(X − µ
√
nan) ∼ χ2

n−1.

Thus,

(n− 1)
S2
n

σ2
=

1

σ2
∥QX∥22 =

1

σ2
XTQTQX =

1

σ2
XTQX ∼ χ2

n−1.
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Lecture 9: Order Statistics: Continuous Univariate Distributions
Instructor: Emilija Perković Compiled on: 2023-11-29, 08:33:20

Additional reading: Chapter 9 of Perlman (2019).

Let X1, · · · , Xn be IID continuous R.V.’s with a PDF pX(x) and a CDF FX(x). Since they are continuous
R.V.s, we will generally assume that they all take distinct values. The order statistics X(1) < X(2) < · · · <
X(n) are the ordered versions of these n random variables such that X(j) is the j-th smallest values among
{X1, · · · , Xn}. Thus,

X(1) = min{X1, · · · , Xn}
X(n) = max{X1, · · · , Xn}.

In past lectures we have already considered the distributions of X(1) and X(n) as well as the joint distribution

of (X(1), X(n)), when, for instance, X1, . . . , Xn
IID∼ Uniform[0, 1]. We now revisit these computations in more

generality.

Distribution of the minimum. We first compute the CDF FX(1)
(x):

FX(1)
(x) = P (X(1) ≤ x) = 1− P (X(1) > x)

= 1− P (X1 > x,X2 > x, . . . ,Xn > x)

IID
= 1− [P (X1 > x)]n = 1− [1− FX(x)]n.

We can also obtain the PDF pX(1)
(x) by differentiating the above. Hence,

pX(1)
(x) =

d

dx
(1− [1− FX(x)]n) = n[1− FX(x)]n−1pX(x).

Distribution of the maximum. We first compute the CDF FX(n)
(x):

FX(n)
(x) = P (X(n) ≤ x)

= P (X1 ≤ x,X2 ≤ x, . . . ,Xn ≤ x)

IID
= [P (X1 ≤ x)]n = [FX(x)]n.

We can also obtain the PDF pX(n)
(x) by differentiating the above. Hence,

pX(n)
(x) =

d

dx
([FX(x)]n) = n[FX(x)]n−1pX(x).

Joint distribution of the minimum and maximum. We first compute the CDF FX(1),X(n)
(x, y) =

P (X(1) ≤ x,X(n) ≤ y). For this computation, note the following relationship that follows from the law of
total probability.

P (X(n) ≤ y) = P (X(1) ≤ x,X(n) ≤ y) + P (X(1) > x,X(n) ≤ y). (9.1)

9-1
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We know how to compute the left-hand-side of Equation (9.1), by above. So to compute the desired CDF,
we need to reason about P (X(1) > x,X(n) ≤ y). In this case, we need to have x < y, otherwise, the above
decomposition is trivial, since P (X(1) > x,X(n) ≤ y) = 0. We now compute P (X(1) > x,X(n) ≤ y):

P (X(1) > x,X(n) ≤ y) = P (x < X1 ≤ y, x < X2 ≤ y, . . . , x < Xn ≤ y)

IID
= [P (x < X1 ≤ y)]n = [FX(y)− FX(x)]n.

Thus, the CDF FX(1),X(n)
(x, y) equals

FX(1),X(n)
(x, y) = P (X(1) ≤ x,X(n) ≤ y)

(9.1)
= P (X(n) ≤ y)− P (X(1) > x,X(n) ≤ y)

= [FX(y)]n − [FX(y)− FX(x)]n.

And the PDF pX(1),X(n)
(x, y) is

pX(1),X(n)
(x, y) =

d2

dx dy
([FX(y)]n − [FX(y)− FX(x)]n) = n(n− 1)[FX(y)− FX(x)]n−2pX(x)pX(y).

Note that above, we insist on x < y.

9.1 Joint Distribution of All Order Statistics

An interesting note: suppose that we have n = 3, and we observe x1, x2, x3, such that x1 < x2 < x3. Then
X(1) = x1, X(2) = x2, and X(3) = x3. What kind of sampling of X1, X2, X3 could have generated these
observations? It could have been

X1 = x1, X2 = x2, X3 = x3, or

X1 = x2, X2 = x3, X3 = x1, or

X1 = x2, X2 = x1, X3 = x3, or . . . .

There are 3! = 6 permutations that could have generated the same order statistics. Hence, the mapping

(X1, · · · , Xn) → (X(1), · · · , X(n))

is not 1-to-1 but (n!)-to-1.

We will use this information to compute the joint distribution of the order statistics. Instead of the joint
CDF P (X(1) ≤ x1, . . . , X(n) ≤ xn) let’s now consider a slightly different object that is easier to compute:

P (y1 < X(1) ≤ x1, . . . , yn < X(n) ≤ xn),

where we insist on y1 < x1 ≤ y2 < x2 ≤ · · · ≤ yn < xn. The order statistics will satisfy the above for n!
different permutations of X1, . . . , Xn. Since these are all disjoint events, because of y1 < x1 ≤ y2 < x2 ≤
· · · ≤ yn < xn and since X1, . . . , Xn are IID, we have the following:

P (y1 < X(1) ≤ x1, . . . , yn < X(n) ≤ xn) = n!P (y1 < X1 ≤ x1, . . . , yn < Xn ≤ xn)

= n!

n∏
i=1

P (yi < Xi ≤ xi) = n!

n∏
i=1

[FX(xi)− FX(yi)].
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Now to derive the PDF pX(1),...,X(n)
(x1, . . . xn) of the order statistics, note that above we have obtained:∫ xn

yn

∫ xn−1

yn−1

· · ·
∫ x1

y1

pX(1),...,X(n)
(t1, . . . tn)dt1 . . . dtn = n!

n∏
i=1

[FX(xi)− FX(yi)].

Differentiating both sides of the above equation with respect to x1, . . . , xn we obtain:

d

dx1
. . .

d

dxn

[ ∫ xn

yn

∫ xn−1

yn−1

· · ·
∫ x1

y1

pX(1),...,X(n)
(t1, . . . tn)dt1 . . . dtn

]
=

d

dx1
. . .

d

dxn

[
n!

n∏
i=1

[FX(xi)− FX(yi)]

]
.

pX(1),...,X(n)
(x1, . . . xn) = n!pX(x1)pX(x2) · · · pX(xn),

which gives us the joint PDF for our order statistics.

9.2 Marginal Distributions of Order Statistics

Distribution of X(j). We will use the fact that we have the above expression for the joint distribution
pX(1),...,X(n)

(x1, . . . xn) and integrate out all unwanted xis.

Let’s suppose that j ̸= 1, since we know how to compute the marginal distribution of the minimum. Hence,
consider integrating out x1. What are the bounds of the integral? Note that we need to have x1 < x2 <
· · · < xn in the PDF pX(1),...,X(n)

(x1, . . . xn). So the limits of integration are −∞ and x2. Then

pX(2),...,X(n)
(x2, . . . xn) =

∫ x2

−∞
pX(1),...,X(n)

(x1, . . . xn)dx1

=

∫ x2

−∞
n!pX(x1)pX(x2) · · · pX(xn)dx1

= n!F (x2)pX(x2) · · · pX(xn),

for x2 < · · · < xn. Let’s suppose that j ̸= 2, so that we also need to integrate out x2 above.

pX(3),...,X(n)
(x3, . . . xn) =

∫ x3

−∞
pX(2),...,X(n)

(x2, . . . xn)dx2

=

∫ x3

−∞
n!FX(x2)pX(x2)p(x3) · · · pX(xn)dx2

= n! p(x3) · · · pX(xn)

∫ x3

−∞
FX(x2)pX(x2)dx2

= n!
1

2
pX(x3) · · · pX(xn)

[
F (x2)

]2∣∣∣∣x2=x3

x2=−∞

=
n!

2
[F (x3)]

2pX(x3) · · · pX(xn),

for x3 < · · · < xn. Above, we used that if u = FX(x2), than du = pX(x2)dx2, and also that FX(−∞) = 0.

We can keep integrating like this until we reach xj . At that point we will have

pX(j),...,X(n)
(xj , . . . xn) =

n!

(j − 1)!
[F (xj)]

j−1pX(xj) · · · pX(xn),

with xj < xj+1 < · · · < xn.
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Now, we can start integrating “from the other side”. Starting with xn (again assuming that j ̸= n). The
limits of integration will now be xn−1 to ∞:

pX(j),...,X(n−1)
(xj , . . . xn−1) =

∫ +∞

xn−1

pX(j),...,X(n)
(xj , . . . xn)dxn

=

∫ +∞

xn−1

n!

(j − 1)!
[F (xj)]

j−1pX(xj) · · · pX(xn)dxn

=
n!

(j − 1)!
[F (xj)]

j−1pX(xj) · · · pX(xn−1)[1− FX(xn−1)],

for xj < xj+1 < · · · < xn−1.

We can keep up this process, until we reach:

pX(j)
(xj) =

n!

(j − 1)!(n− j)!
[F (xj)]

j−1pX(xj)[1− FX(xj)]
n−j ,

for xj ∈ R.

The heuristic reasoning for the above expression is that there are n! ways to arrange Xi’s, and we need
(j − 1) of Xi’s to fall below xj (each with probability F (xj)) and (n− j) of Xi’s to fall above xj (each with
probability 1− F (xj)). There are (j − 1)! ways of arranging the Xi’s which are below xj and (n− j)! ways
of arranging the X ′

is above xj . Hence, those need to be divided out of the total n! arrangements.

Distribution of X(i) and X(j) for i < j. Using the same principles as in the section above, we can come
up with all kinds of joint PDFs or conditional PDFs.

In particular, the joint PDF for X(i) and X(j) when i < j can be computed as:

pX(i),X(j)
(xi, xj) =

n!

(i− 1)!(j − i− 1)!(n− j)!
[F (xi)]

i−1pX(xi)[F (xj)− F (xi)]
j−i−1pX(xj)[1− FX(xj)]

n−j ,

for xi < xj .

Aside: Order statistics and their properties and convergences are the topic of study in a branch of statistics
known as Extreme Value Theory. This branch of statistics has many equivalent results to those we covered,
such as a version of the CLT with different limiting distributions! Extreme value theory used to be primarily
used to model insurance computations, but more recently has seen a lot of applications in climate science
(see e.g. the work on Extreme Event Attribution.)

9.3 Case study: uniform distribution

Consider the case where X1, · · · , Xn are IID from Uni[0, 1]. Then pX(x) = 1 and FX(x) = x when x ∈ [0, 1].
Thus,

pYj
(y) =

n!

(j − 1)!(n− j)!
yj−1(1− y)n−j ,

which is the PDF of Beta(j, n− j + 1).

Here is an interest note about the variance. The variance of Yj is

Var(Yj) =
j(n− j + 1)

(n+ 1)2(n+ 2)
,
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which is maximized when j = n+1
2 assuming n is an odd number. The value j = n+1

2 corresponds to the
‘median’ of {X1, · · · , Xn}. Thus, the median has the highest variability. In this case,

Var(Yn+1
2
) =

1

4(n+ 2)
= O(n−1).

On the other hand, the maximal or minimal value has the lowest variance:

Var(Y1) = Var(Yn) =
n

(n+ 1)2(n+ 2)
= O(n−2).

Now we consider another way to look at the order statistics. Let W1, · · · ,Wn,Wn+1 be the ‘spacing’ between
consecutive order statistics:

W1 = Y1 − 0

W2 = Y2 − Y1

W3 = Y3 − Y2

...

Wn = Yn − Yn−1

Wn+1 = 1− Yn.

It is easy to see that Wi ∈ [0, 1] and W1 +W2 + · · ·+Wn+1 = 1. Also, we can reparametrize Yj via Wi’s:

Yj = W1 +W2 + · · ·+Wj .

Since Xi’s are uniform over [0, 1], the joint PDF of Y1, · · · , Yn is

p(y1, · · · , yn) = n!

whenever 0 < y1 < · · · < yn < 1. By the Jacobian method with the fact that det( dY
dW ) = 1 (think about

why), we conclude that
p(w1, · · · , wn) = n!

whenever wi ∈ [0, 1] and w1 + · · · + wn < 1. One can easily see that p(w1, · · · , wn) is invariant under the
permutation of W1, · · · ,Wn (i.e., they are exchangeable), so the marginal distribution of Wi is the same as
the marginal distribution of Wj for all i, j = 1, · · · , n. Because W1 = Y1 follows from Beta(1, n), we conclude
that Wj is a Beta(1, n) random variable.

Note that Wi and Wj are dependent (i ̸= j)! Due to the exchangeability property, the joint distribution
(Wi,Wj) is the same as the joint distribution of W1,W2, so

Cov(Wi,Wj) = Cov(W1,W2)

=
1

2
(Var(W1 +W2)− Var(W1)− Var(W2))

=
1

2
(Var(Y2)− 2Var(Y1))

=
1

2

(
2(n− 1)

(n+ 1)2(n+ 2)
− 2

n

(n+ 1)2(n+ 2)

)
=

−1

(n+ 1)2(n+ 2)
< 0.
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10.1 The Delta Method

In this section, we will talk about a very useful technique in handling convergence for certain estimators –
the delta method.

Example: inverse of mean. Assume we haveX1, . . . , Xn, . . .
iid∼ F , such that Var(X1) = σ2 and E[X1] = µ,

and that we are interested in estimating 1/µ. Namely, our parameter of interest θ is

θ =
1

µ
=

1

E[Xi]
=

1∫
xdF (x)

.

The plug-in estimator for this quantity based on the EDF is

θ̂n =
1∫

xdF̂n(x)
=

1

X̄n
.

What do we know about the asymptotic properties of this estimator?

Theorem 10.1 (Taylor) If f (r)(a) = ∂r

∂xr f(x)|x=a exists, then for Taylor’s r-order polynomial of f around
a,

Tr(x) =

r∑
i=0

f (i)(a)

i!
(x− a)i

it holds that

lim
x→a

f(x)− Tr(x)

(x− a)r
= 0.

Theorem 10.2 (Delta Method) Let Y1, · · · , Yn · · · be a sequence of random variables such that

√
n(Yn − y0)

D→ N(0, σ2
Y ), (10.1)

for some constants y0 and σ2
Y . For a given differentiable function f such that f ′(y0) ̸= 0, it then holds that

√
n(f(Yn)− f(y0))

D→ N(0, (f ′(y0))
2σ2

Y ). (10.2)

Proof: By first order Taylor expansion of f(Yn) around Yn = y0, we have that

f(Yn) = f(y0) + f ′(y0)(Yn − y0) + o(Yn − y0), (10.3)

where by Taylor’s theorem and the convergence of Yn → y0, o(Yn−y0) = op(Yn−y0)
n→∞→ 0. Since

√
n(Yn−y0)

converges in distribution, then
√
n(Yn − y0) = Op(1) (this means bounded in probability, see Chapter 2.2

10-1
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of Van der Vaart (2000) for details on op, Op notation). Then o(
√
n(Yn − y0)) = op(Op(1)) = op(1), that is,

o(
√
n(Yn − y0))

P→ 0. Then by Equation (10.3), we have that

√
n(f(Yn)− f(y0)) = f ′(y0)

√
n(Yn − y0) + o(

√
n(Yn − y0)).

Now applying the continuous mapping theorem and Slutsky’s theorem (Theorem 3.6 in Lecture notes 3) to
above we have that √

n(f(Yn)− f(y0))
D→ N(0, (f ′(y0))

2σ2
Y ).

Now, we recall our problem and note that θ = f(µ), where f(x) = 1/x and by the CLT
√
n(X̄n − µ)

D→
N (0, σ2). Then noting that θ̂n = f(X̄n), we can apply the Delta method to obtain:

√
n(θ̂n − θ) =

√
n

(
1

X̄n
− 1

E(Xi)

)
≈ − 1

E2(Xi)

√
n
(
X̄n − E(Xi)

) D→ N

0,
1

E4(Xi)
Var(Xi)︸ ︷︷ ︸

=Vinv(F )

 .

Using the fact that E(Xi) =
∫
xdF (x) and Var(Xi) =

∫
x2dF (x)−

(∫
xdF (x)

)2
, we obtain

√
n(θ̂n − θ) ≈ N(0,Vinv(F )),

where

Vinv(F ) =

∫
x2dF (x)−

(∫
xdF (x)

)2(∫
xdF (x)

)4 .

Theorem 10.3 (Second Order Delta Method) Let Y1, · · · , Yn · · · be a sequence of random variables
such that √

n(Yn − y0)
D→ N(0, σ2

Y ), (10.4)

for some constants y0 and σ2
Y . For a given twice differentiable function f such that f ′(y0) = 0, but f ′′(y0) ̸= 0,

it then holds that

n(f(Yn)− f(y0))
D→ σ2

Y

f ′′(y0)

2
χ2
1. (10.5)

Proof: By second order Taylor expansion of f(Yn) around Yn = y0, we have that

f(Yn) = f(y0) + f ′(y0)(Yn − y0) +
f ′′(y0)

2
(Yn − y0)

2 + o((Yn − y0)
2), (10.6)

where by Taylor’s theorem and the convergence of Yn, we have that o((Yn − y0)
2) = oP ((Yn − y0)

2), that is

o((Yn − y0)
2)

P→ 0. Then plugging in f ′(y0) = 0 into Equation (10.6), and re-arranging the terms we have
that

n(f(Yn)− f(y0)) =
f ′′(y0)

2
n(Yn − y0)

2 + o(n(Yn − y0)
2).

Now note that by definition of a Chi-squared random variable, we have that

n

σ2
Y

(Yn − y0)
2 D→ χ2

1.

Now, since n(Yn−y0)
2 converges in distribution we have that n(Yn−y0)

2 = Op(1), so that o(n(Yn−y0)
2) =

op(Op(1)) = oP (1), which implies o(n(Yn − y0)
2)

P→ 0.
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Hence, by applying the continuous mapping theorem and Slutsky’s theorem we have the desired result

n(f(Yn)− f(y0))
D→ f ′′(y0)

2
σ2
Y χ

2
1.

Theorem 10.4 (Multivariate Delta Method) Let
→
X1, . . . ,

→
Xn, . . . be a sequence of random vectors, where

→
Xi = (Xi1, . . . , Xip)

T , i ≥ 1 with E[Xij ] = µj and Cov(Xij , Xik) = σjk. Let g : Rp → R be a given function

with continuous first partial derivatives and a specific value of
→
µ = (µ1, . . . , µp)

T for which

τ2 =
∑
i

∑
j

σij
∂g(

→
µ)

∂µi
· ∂g(

→
µ)

∂µj
> 0.

If
√
n(

→
Xn − →

µ)
D→ N(

→
0 ,Σ), (10.7)

where [Σ]ij = σij, then it also holds that

√
n(g(

→
Xn)− g(

→
µ))

D→ N(0, τ2). (10.8)

The delta method is a very useful technique for analyzing some estimators. In the rest of this lecture, we
consider various other plug-in estimators and their asymptotic properties.

10.2 Empirical Distribution Function

Let us take a look a the empirical distribution again.

Definition 10.5 Let X1, . . . , Xn be a (random sample) collection of iid random variables. The empirical
(sample) distribution Pn is the discrete probability distribution that assigns probability 1

n to each observation
Xi. Equivalently, Pn assigns probability 1

n to each order statistics X(i). The empirical CDF (EDF) Fn is
the CDF associated with Pn, that is,

F̂n(x) =
number of Xi ≤ x

total number of observations
=

=
1

n

n∑
i=1

I(Xi ≤ x)

=
1

n

n∑
i=1

I(X(i) ≤ x)

Because EDF is the average of I(Xi ≤ x), let Yi = I(Xi ≤ x).

Yi =

{
1, if Xi ≤ x

0, if Xi > x
.

So Yi is a Bernoulli random variable What is the parameter p for Yi?

p = P (Yi = 1) = P (Xi ≤ x) = F (x).
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Therefore, for a given x,
Yi ∼ Ber(F (x)).

This implies

E(I(Xi ≤ x)) = E(Yi) = F (x)

Var(I(Xi ≤ x)) = Var(Yi) = F (x)(1− F (x))

for a given x. Recall that F̂n(x) =
1
n

∑n
i=1 I(Xi ≤ x) = 1

n

∑n
i=1 Yi. Hence, nF̂n(x) =

∑
i Yi ∼ Bin(n, p ≡

F (x)). Also,

E
(
F̂n(x)

)
= E(I(X1 ≤ x)) = F (x)

Var
(
F̂n(x)

)
=

∑n
i=1 Var(Yi)

n2
=

F (x)(1− F (x))

n
.

Hence, at each x, F̂n(x) is an unbiased estimator of F (x):

bias
(
F̂n(x)

)
= E

(
F̂n(x)

)
− F (x) = 0.

Furthermore, the variance converges to 0 when n → ∞, which implies that for a given x,

F̂n(x)
P→ F (x).

i.e., F̂n(x) is a consistent estimator of F (x).

Furthermore, by the CLT for a given x,

√
n
(
F̂n(x)− F (x)

)
D→ N(0, F (x)(1− F (x))). (10.9)

Namely, F̂n(x) is asymptotically normally distributed around F (x) with variance F (x)(1− F (x)).

In fact, an even stronger relationship holds:

Theorem 10.6 (Glivenko-Cantelli) If F is a continuous CDF then (10.9) holds uniformly in x, that is,
the following holds:

sup
−∞<x<∞

|F̂n(x)− F (x)| → 0, as n → ∞.

The Glivenko-Cantelli Theorem implies that F̂n
a.s.→ F .

10.3 Statistical Functionals and Nonparametric Estimation

What is a functional? A functional is just a function of a function. Namely, it is a ‘function’ which takes as
input another function and outputs a real number. Formally speaking, a functional is a mapping T : F 7→ R,
where F is a collection of functions. A statistical functional is a functional T that takes as input a CDF. In
this lecture we will consider estimating statistical functional, that is our parameter of interest θ is

θ = T (F ),

for some statistical functional T (F ), and CDF F . Examples of several statistical functionals are below.
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Mean of a distribution. The mean of a distribution is a statistical functional

µ = Tmean(F ) =

∫
xdF (x).

When the distribution is continuous, dF (x) = p(x)dx so the mean functional reduces to:

µ = Tmean(F ) =

∫
xdF (x) =

∫
xp(x)dx = E[X].

When the distribution is discrete, we define∫
xdF (x) =

∑
x

xP (x) =⇒ µ = Tmean(F ) =
∑
x

xP (x) = E[X],

where P (x) is the PMF of the distribution F . In either case,

E[X] =

∫
xdF (x) = Tmean(F ).

Aside: A pause here to reflect on the fact that we are now labeling the expectation as a function of F
rather than X. When we write “X ′′ in E[X], and talk about the mean “of X” this is actually shorthand for
the “mean of the distribution of X”. This is not a function of a random X (since the expectation is just a
constant), though it is a functional of X, i.e. a function of the distribution of X.

Variance of a distribution. The variance of a distribution is also a statistical functional. Let X be a
random variable with CDF F . Then

σ2 = Tvar(F ) = Var(X) = E(X2)− E2(X) =

∫
x2dF (x)−

(∫
xdF (x)

)2

.

Median of a distribution. Using the concept of a statistical functional, any quantile can be easily defined.
The median of a distribution F is a point θmed such that F (θmed) = 0.5. Thus,

Tmed(F ) = F−1 (0.5) .

Note that when F is a CDF of a discrete random variable, F−1 may have multiple values. In this case, we
define

F−1(q) = inf{x : F (x) ≥ q}.
Any quantile of a distribution can be represented in a similar way. For instance, the q-quantile (0 < q < 1)
will be

Tq(F ) = F−1 (q) .

As a result, the interquartile range (IQR) is

TIQR(F ) = F−1(0.75)− F−1(0.25).

Linear (Statistical) Functionals. More generally, recall that for any function ω,

E[ω(X)] =

∫
ω(x)dF (x).

We use this property to introduce a class of statistical functionals called linear functionals. A statistical
functional Tω referred to as a linear functional if:

Tω(F ) =

∫
ω(x)dF (x).
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10.4 Plug-in Estimators Broadly

Statistical functionals combined with the EDF provide simple plug-in estimators to various population
quantities. These types of estimators are referred to as non-parametric.

Thus, if we want to estimate a population quantity θ = Ttarget(F ), we can use Ttarget(F̂n) = θ̂n as our
estimator. Many estimators follow this form. For instance, the estimator for the µ = Tmean(F ). If you

plug-in F̂n into the statistical functional:

Tmean(F̂n) =

∫
xdF̂n(x) =

n∑
i=1

Xi
1

n
=

n∑
i=1

Xi

n
= X̄n.

See also earlier discussions for the method of moments.

We can apply the same principle to estimate the median:

Tmed(F̂n) = F̂−1
n (0.5)

and other quantiles of a distribution. (These estimators turn out to be equal to the sample median, or the
corresponding sample quantiles.)

Are these estimators any good? Since Glivenko-Cantelli gives us that

F̂n
a.s.→ F

can we also conclude that
T (F̂n)

a.s.→ T (F )?

The answer is sometimes, but not always. In this lecture we discuss some cases when this convergence holds.
For an example where the plug-in estimate is not consistent, note that using the empirical distribution to
estimate a continuous density will not give you a consistent estimate.

When is the plug-in estimator T (F̂n) consistent? We have seen one example of consistency in the delta
method above. More generally, consistency requires conditions on the smoothness (differentiability) of T (F ),
which puts us in another predicament. How do you take a derivative with respect to a function? To do this,
we expand the notion of the derivative.

Note that we leave out some details in the below two definitions please see a course on functional analysis
for more details.

Definition 10.7 (Gâteaux derivative) The Gâteaux derivative of T (F ) in the direction G (where G is a
function in the same class as F ) is defined by

LF (T ;G) = lim
ϵ→0

T ((1− ϵ)F + ϵG)− T (F )

ϵ
. (10.10)

Or equivalently, if D = G− F , than equation (10.10) becomes

LF (T ;D) = lim
ϵ→0

T (F + ϵD)− T (F )

ϵ
. (10.11)

From a statistical perspective, when F and G are CDFs, the Gâteaux derivative represents the rate of change
in the statistical functional when are CDF F is “contaminated” by a small (ϵ) amount of G.

If the Gâteaux derivative of T (F ) exists, is that enough to have T (F̂n) → T (F )? Unfortunately, no. We
need an even stronger condition known as Hadamard differentiability.
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Definition 10.8 (Hadamard Differentiability) A functional T (F ) is Hadamard Differentiable if, for

any sequence ϵn
n→∞→ 0 and a sequence of functions Dn satisfying supx |Dn(x) − D(x)| n→∞→ 0 (where

D1, . . . , Dn, . . . and D are in the same function class as F ) we have

T (F + ϵnDn)− T (F )

ϵn
→ LF (T ;D) < ∞.

See the connection with Glivenko-Cantelli. If T (F ) is Hadamard differentiable, then T (F̂n)
P→ T (F ).

10.4.1 The Influence Function

The influence function of a statistical functional Ttarget is a special case of the Gâteaux derivative when
G = δx, where

δx(u) =

{
0, if u < x
1, if u ≥ x

}

Note that the influence function of the EDF is called the empirical influence function. We will rely on the
influence function to analyze asymptotic properties of our estimators. The influence function is also related
to the robustness of an estimator and plays a key role in the semi-parametric statistics (Van der Vaart,
2000).

Definition 10.9 Let X be a random variable with CDF F and let T (F ) be some functional. The influence
function L(x) of T (F ) is defined as

LF (x) = lim
ϵ→0

Ttarget((1− ϵ)F + ϵδx)− Ttarget(F )

ϵ
. (10.12)

A powerful feature of the influence function is that when the statistical functional Ttarget is Hadamard
differentiable then

√
n
(
Ttarget(F̂n)− Ttarget(F )

)
D→ N

(
0,Vtarget(F ) =

∫
L2
F (x)dF (x)

)
(10.13)

and a consistent estimator of Vtarget(F ) is Vtarget(F̂n) =
1
n

∑n
i=1 L

2
F̂n

(Xi). This is related to the functional

delta method see Chapters 3 and 20 of Van der Vaart (2000) for more details.

10.4.2 Linear Functionals

Many statistical functionals are of the form

Tω(F ) =

∫
ω(x)dF (x),

where ω is some function. This type of statistical functional is called a linear functional.

The empirical estimators of linear functionals have the following form:

Tω(F̂n) =

∫
ω(x)dF̂n(x) =

1

n

n∑
i=1

ω(Xi).
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Moreover, for any linear function, it’s influence function is simply:

LF (x) = ω(x)− Tω(F ). (10.14)

A short computational explanation for the above:

LF (x) = lim
ϵ→0

Tω(Fϵ)− Tω(F )

ϵ
= lim

ϵ→0

∫
ω(x)dFϵ(x)− Tω(F )

ϵ

= lim
ϵ→0

∫
ω(x)dFϵ(x)−

∫
Tω(F )dFϵ(x)

ϵ
= ω(x)− Tω(F ).

Theorem 10.10 Suppose that Tω is a linear functional with an influence function LF (x) defined in equation
(10.14) and

∫
ω2(x)dF (x) < ∞. Then

√
n
(
Tω(F̂n)− Tω(F )

)
D→ N

(
0,Vω(F ) =

∫
L2
F (x)dF (x)

)
and a consistent estimator of Vω(F ) is Vω(F̂n) =

1
n

∑n
i=1 L

2
F̂n

(Xi).

Proof:

It is easy to see that

Tω(F̂n)− Tω(F ) =

∫
LF (x)dF̂n(x) =

1

n

n∑
i=1

LF (Xi).

Moreover,

E(LF (Xi)) =

∫
LF (x)dF (x) =

∫
(ω(x)− Tω(F )) dF (x) = Tω(F )− Tω(F ) = 0.

Note also that since by assumption
∫
ω2(x)dF (x) < ∞, Jensen’s inequality gives us that

∫
ω(x)dF (x) < ∞

(Existence of higher order moments implies existence of lower order moments.) Furthermore, note that∫
L2
F (x)dF (x) =

∫
ω2(x)dF (x)− T 2

w(F ) =

∫
ω2(x)dF (x)− (

∫
ω(x)dF (x))2 < ∞.

Thus, by the central limit theorem,

√
n
(
Tω(F̂n)− Tω(F )

)
D→ N

(
0,Vω(F ) =

∫
L2
F (x)dF (x)

)
Moreover,

Vω(F̂n) =

∫
L2
F̂n

(x)dF̂n(x) =

∫ (
ω2(x)− 2ω(x)Tω(F̂n) + T 2

ω(F̂n)
)
dF̂n(x)

=

∫
ω2(x)dF̂n(x)− T 2

ω(F̂n).

(10.15)

By the Law of Large Numbers and the continuous mapping theorem,

T 2
ω(F̂n)

P→ T 2
ω(F ).

And ∫
ω2(x)dF̂n(x) = Tω2(F̂n)

P→ Tω2(F ).

Therefore, we conclude that when
∫
ω2(x)dF (x) < ∞,

Vω(F̂n) =

∫
ω2(x)dF̂n(x)− T 2

ω(F̂n)
P→ Vω(F ) =

∫
L2
F (x)dF (x).
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10.4.3 Non-linear Functionals

Some statistical functionals are not linear. For instance, the median

Tmed(F ) = F−1(0.5)

is not a linear functional. However, it turns out that this functional is Hadamard differentiable and so, we
can use Equation (10.13).

The influence function of the functional Tmed is

LF (x) =
1

2p(F−1(0.5))
,

where p is the PDF of F .

Note that F−1(0.5) = Tmed(F ) is the median of F . So this shows not only the asymptotic normality of the
sample median but also its limiting variance, which is inversely related to the PDF at the median.

10.5 The Bootstrap

Assume we are given the data points X1, · · · , Xn. Let Mn = median{X1, · · · , Xn}. As we have seen in

previous sections, our estimate for the population median will be Mn = T (F̂n). How do we estimate the
variance/MSE/other uncertainty for our estimate Mn? We will use a method called the bootstrap (or
empirical/non-parametric bootstrap). The bootstrap can be used in many complex scenarios such as this
one.

Here is the procedure. First, we sample with replacement n “new” data points from our n data points,

leading to a set of new observations denoted as X
∗(1)
1 , · · · , X∗(1)

n . We then repeat the sample procedure
again, generating a new sample from the original dataset X1, · · · , Xn by sampling with replacement, leading

to another new sets of observations X
∗(2)
1 , · · · , X∗(2)

n . Now we keep repeating the same process of generating
new sets of observations, after B rounds, we will obtain

X
∗(1)
1 , · · · , X∗(1)

n

X
∗(2)
1 , · · · , X∗(2)

n

...
...

...

X
∗(B)
1 , · · · , X∗(B)

n .

So, in total, we will have B sets of data points. Each set of the data points, say X
∗(1)
1 , · · · , X∗(1)

n , is called a
bootstrap sample. This sampling approach–sample with replacement from the original dataset–is called the
empirical bootstrap, and was introduced by Bradley Efron (sometimes this approach is also called Efron’s
bootstrap or nonparametric bootstrap)1.

Now for each “new” set of data, we compute the sample median. This leads to B sample medians, called

1The name is a reference to “pulling yourself by your bootstraps” quote from Surprising Adventures of Baron Munchausen.
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bootstrap medians:

M∗(1)
n = median{X∗(1)

1 , · · · , X∗(1)
n }

M∗(2)
n = median{X∗(2)

1 , · · · , X∗(2)
n }

...

M∗(B)
n = median{X∗(B)

1 , · · · , X∗(B)
n }.

Here are some interesting things you can do with all these bootstrap samples.

• Bootstrap estimate of the variance of the sample median. We will use the sample variance of

M
∗(1)
n , · · · ,M∗(B)

n as an estimate of the variance of sample median Mn. Namely, we will use

V̂arB(Mn) =
1

B − 1

B∑
ℓ=1

(
M∗(ℓ)

n − M̄∗
B

)2

, M̄∗
B =

1

B

B∑
ℓ=1

M∗(ℓ)
n ,

as an estimate of Var(Mn).

• Bootstrap estimate of the MSE of the sample median. Moreover, we can estimate the MSE by

̂MSE(Mn) =
1

B

B∑
ℓ=1

(
M∗(ℓ)

n −Mn

)2

.

• Bootstrap confidence interval for the of the sample median. In addition, we can construct a
1− α confidence interval of the population median via

Mn ± z1−α/2 ·
√
V̂arB(Mn).

Well... this sounds a bit weird–we generate new data points by sampling from the existing data points.
However, under some conditions, this approach does work! Meaning the above estimates, lead to some
sensible approximations. Here is a brief explanation on why this approach works (in some cases).

Let X1, · · · , Xn ∼ F . When we sample with replacement from X1, · · · , Xn, what is the distribution we

are sampling from? Let Z ≡ X
∗(b)
i , i ∈ {1, . . . , n}, b ∈ {1, . . . , B}, then Z has the following probability

distribution:

P (Z = Xi) =
1

n
, for each i = 1, 2, · · · , n.

Thus, each set of the bootstrap sample is an IID sample from F̂n. Namely,

X
∗(1)
1 , · · · , X∗(1)

n ∼ F̂n

X
∗(2)
1 , · · · , X∗(2)

n ∼ F̂n

...

X
∗(B)
1 , · · · , X∗(B)

n ∼ F̂n.

Because a bootstrap median, say M
∗(b)
n , is the sample median of X

∗(b)
1 , · · · , X∗(b)

n . Its CDF is F
M

∗(b)
n

(x) =

T (F̂n), whereas the CDF of the sample median Mn is FMn(x) = T (F̂ ). We know that F̂n
a.s.→ F. Thus,
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as long as T is “smooth” with respect to F (see previous sections), F
M

∗(b)
n

(x) → FMn
(x). This has many

implications. For an example, when two CDFs are similar, their variances will be similar as well, i.e.,

Var
(
M∗(b)

n |X1, · · · , Xn

)
≈ Var(Mn).

The reason why we condition onX1, · · · , Xn on the left-hand-side, is because when we compute the bootstrap

estimate, the original observations X1, · · · , Xn are fixed. Now the bootstrap variance estimate V̂arB(Mn) is

just a sample variance of M
∗(b)
n :

V̂arB(Mn) =
1

B − 1

B∑
ℓ=1

(
M∗(ℓ)

n − M̄∗
B

)2

≈ Var
(
M∗(ℓ)

n |X1, · · · , Xn

)
.

Lets take a step back and examine what is going on here. We have learned that the bootstrap sample is a
new random sample from the EDF F̂n. Each bootstrap sample itself forms another EDF called the bootstrap
EDF, denoted as F̂ ∗

n . Namely, let X∗
1 , · · · , X∗

n be a bootstrap sample. Then the bootstrap EDF is

F̂ ∗
n(x) =

1

n

n∑
i=1

I(X∗
i ≤ x).

Note that our goal is to estimate the Var(Mn) = Ttarget(F ) and we are using the bootstrap sample, that is

V̂arB(Mn) = Ttarget(F̂
∗
n). So the estimator using the bootstrap sample is another plug-in estimator but now

we are plugging in the bootstrap EDF F̂ ∗
n . As a result, we can use the results of the previous sections. That

is the bootstrap estimator will be consistent for linear functionals whenever Tω2(F ) < ∞.

Consistency of the bootstrap variance estimator. Suppose our parameter of interest is θ, we have
obtained an estimate θ̂n based on the EDF plug-in and now we are looking to estimate the uncertainty of
θ̂n using the bootstrap. We generate bootstrap samples from the EDF F̂n and obtain several realizations of
θ̂∗n’s. Namely, we generate

θ̂∗(1)n , · · · , θ̂∗(B)
n

and use their sample variance, V̂arB(θ̂
∗
n), as an estimator of Var(θ̂n). Note that V̂arB(θ̂

∗
n) is

V̂arB(θ̂
∗
n) =

1

B − 1

N∑
ℓ=1

(
θ̂∗(ℓ)n − ¯̂

θ
∗
n,B

)
,

¯̂
θ
∗
n,B =

1

B

B∑
ℓ=1

θ̂∗(ℓ)n .

Then
V̂arB(θ̂

∗
n)

B→∞→ Var(θ̂∗n|F̂n). (10.16)

Note that ·|F̂n means conditioned on F̂n being fixed. The reason why above we have a convergence to the

conditioned variance is because when we generate bootstrap samples, the original EDF F̂n is fixed (and we
are generating from it).

Now, to argue that the bootstrap variance V̂arB(θ̂
∗
n) is a good estimate of the original variance, we need to

argue
Var(θ̂∗n|F̂n) → Var(θ̂n).

Or more formally,

Var(θ̂∗n|F̂n)

Var(θ̂n)
→ 1 (10.17)

(people generally use the ratio expression because both quantities often converge to 0 when the sample size
n → ∞). Under weak conditions (beyond the scope of this course) this convergence indeed holds.
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Validity of bootstrap confidence interval. How about the validity of the bootstrap confidence interval?
This will also often hold. Read more on the Berry-Essen bound if interested.

Example: Sample Mean. Our parameter of interest is now the mean of a distribution Ttarget = Tmean.
The mean of a distribution has the form

µ = Tmean(F ) =

∫
xdF (x).

The plug-in estimator is

µ̂n = Tmean(F̂n) =

∫
xdF̂n(x) = X̄n

and the bootstrap estimator is

µ̂∗
n = Tmean(F̂

∗
n) =

∫
xdF̂ ∗

n(x) = X̄∗
n.

It is clear from the Central Limit Theorem that

√
n(µ̂n − µ)

D→ N(0,Var(
√
n · Tmean(F̂n)))

and for the bootstrap it can be shown that the following holds

√
n(µ̂∗

n − µ̂n)
D→ N(0,Var(

√
n · Tmean(F̂

∗
n)|F̂n)).

In this case, we know that

Var(
√
n·Tmean(F̂n)) = Var(

√
nX̄n) = Var(Xi) =⇒ Vmean(F ) = Var(Xi) = E(X2

i )−E2(Xi) =

∫
x2dF (x)−

(∫
xdF (x)

)2

.

Therefore, the bootstrap variance is

Var(
√
n · Tmean(F̂

∗
n)|F̂n) = Vmean(F̂n) =

∫
x2dF̂n(x)−

(∫
xdF̂n(x)

)2

.

By the Law of Large Numbers and continuous mapping theorem,∫
x2dF̂n(x) =

1

n

n∑
i=1

X2
i

P→ E(X2
i ) =

∫
x2dP (x)

∫
xdF̂n(x) =

1

n

n∑
i=1

Xi
P→ E(Xi) =

∫
xdP (x).

Thus, by Slutsky’s theorem,

Vmean(F̂n)
P→ Vmean(F ).

Thus, the bootstrap variance estimator converges to the true variance estimator and we can conclude that

Var(Tmean(F̂
∗
n)|F̂n)

Var(Tmean(F̂n))

P→ 1.

As a result, the bootstrap variance estimator is consistent and the bootstrap confidence interval is also valid.

Generalization to other statistics. The bootstrap can be applied to many other statistics such as sample
quantiles, interquartile range, skewness (related to E(X3)), kurtosis (related to E(X4)), ...etc. The theory
basically follows from the same idea.
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Failure of the bootstrap. However, the bootstrap may fail for some statistics. One example is the
minimum value of a distribution. Here is an illustration why the bootstrap fails. Let X1, · · · , Xn ∼ Uni[0, 1]
and X(1) = min{X1, · · · , Xn} be the minimum value of the sample. Then it is known that

n ·X(1)
D→ Exp(1).

♠ : Think about why it converges to exponential distribution.

Thus, X(1) has a continuous distribution. Assume we generate a bootstrap sample X∗
1 , · · · , X∗

n from the
original observations. Now let X∗

(1) = min{X∗
1 , · · · , X∗

n} be the minimum value of a bootstrap sample.

Because each X∗
ℓ has an equal probability ( 1n ) of selecting each of X1, · · · , Xn, this implies

P (X∗
ℓ = X(1)) =

1

n
.

Namely, for each observation in the bootstrap sample, we have a probability of 1/n selecting the minimum
value of the original sample. Thus, the probability that we do not select X(1) in the bootstrap sample is

P (none of X∗
1 , · · · , X∗

n select X(1)) =

(
1− 1

n

)n

≈ e−1.

This implies that with a probability 1− e−1, one of the observation in the bootstrap sample will select the
minimum value of the original sample X(1). Namely,

P (X∗
(1) = X(1)) = 1− e−1.

Thus, X∗
(1) has a huge probability mass at the value X(1), meaning that the distribution of X∗

(1) will not be
close to an exponential distribution.
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